Direct product G=NxQ with N=C28 and Q=D6
Semidirect products G=N:Q with N=C28 and Q=D6
Non-split extensions G=N.Q with N=C28 and Q=D6
extension | φ:Q→Aut N | d | ρ | Label | ID |
C28.1D6 = C21:D8 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4 | C28.1D6 | 336,29 |
C28.2D6 = C7:D24 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4+ | C28.2D6 | 336,31 |
C28.3D6 = C28.D6 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4 | C28.3D6 | 336,32 |
C28.4D6 = C42.D4 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4 | C28.4D6 | 336,33 |
C28.5D6 = D12.D7 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4- | C28.5D6 | 336,36 |
C28.6D6 = Dic6:D7 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4+ | C28.6D6 | 336,37 |
C28.7D6 = C21:Q16 | φ: D6/C3 → C22 ⊆ Aut C28 | 336 | 4 | C28.7D6 | 336,38 |
C28.8D6 = C7:Dic12 | φ: D6/C3 → C22 ⊆ Aut C28 | 336 | 4- | C28.8D6 | 336,40 |
C28.9D6 = D4:D21 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4+ | C28.9D6 | 336,101 |
C28.10D6 = D4.D21 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4- | C28.10D6 | 336,102 |
C28.11D6 = Q8:2D21 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4+ | C28.11D6 | 336,103 |
C28.12D6 = C21:7Q16 | φ: D6/C3 → C22 ⊆ Aut C28 | 336 | 4- | C28.12D6 | 336,104 |
C28.13D6 = D7xDic6 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4- | C28.13D6 | 336,137 |
C28.14D6 = D28:S3 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4 | C28.14D6 | 336,139 |
C28.15D6 = D12:D7 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4 | C28.15D6 | 336,141 |
C28.16D6 = D21:Q8 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4 | C28.16D6 | 336,143 |
C28.17D6 = D12:5D7 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4- | C28.17D6 | 336,145 |
C28.18D6 = D14.D6 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4+ | C28.18D6 | 336,146 |
C28.19D6 = D4:2D21 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4- | C28.19D6 | 336,199 |
C28.20D6 = Q8xD21 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4- | C28.20D6 | 336,200 |
C28.21D6 = Q8:3D21 | φ: D6/C3 → C22 ⊆ Aut C28 | 168 | 4+ | C28.21D6 | 336,201 |
C28.22D6 = C3:D56 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4+ | C28.22D6 | 336,30 |
C28.23D6 = C6.D28 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4- | C28.23D6 | 336,34 |
C28.24D6 = C21:SD16 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4+ | C28.24D6 | 336,35 |
C28.25D6 = C3:Dic28 | φ: D6/S3 → C2 ⊆ Aut C28 | 336 | 4- | C28.25D6 | 336,39 |
C28.26D6 = D28:5S3 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4- | C28.26D6 | 336,138 |
C28.27D6 = S3xDic14 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4- | C28.27D6 | 336,140 |
C28.28D6 = D84:C2 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4+ | C28.28D6 | 336,142 |
C28.29D6 = D7xC3:C8 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.29D6 | 336,23 |
C28.30D6 = S3xC7:C8 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.30D6 | 336,24 |
C28.31D6 = D21:C8 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.31D6 | 336,25 |
C28.32D6 = C28.32D6 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.32D6 | 336,26 |
C28.33D6 = D6.Dic7 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.33D6 | 336,27 |
C28.34D6 = D42.C4 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.34D6 | 336,28 |
C28.35D6 = D6.D14 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.35D6 | 336,144 |
C28.36D6 = C7xD4:S3 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.36D6 | 336,85 |
C28.37D6 = C7xD4.S3 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.37D6 | 336,86 |
C28.38D6 = C7xQ8:2S3 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.38D6 | 336,87 |
C28.39D6 = C7xC3:Q16 | φ: D6/S3 → C2 ⊆ Aut C28 | 336 | 4 | C28.39D6 | 336,88 |
C28.40D6 = C7xD4:2S3 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.40D6 | 336,189 |
C28.41D6 = S3xC7xQ8 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.41D6 | 336,190 |
C28.42D6 = C7xQ8:3S3 | φ: D6/S3 → C2 ⊆ Aut C28 | 168 | 4 | C28.42D6 | 336,191 |
C28.43D6 = C8:D21 | φ: D6/C6 → C2 ⊆ Aut C28 | 168 | 2 | C28.43D6 | 336,92 |
C28.44D6 = D168 | φ: D6/C6 → C2 ⊆ Aut C28 | 168 | 2+ | C28.44D6 | 336,93 |
C28.45D6 = Dic84 | φ: D6/C6 → C2 ⊆ Aut C28 | 336 | 2- | C28.45D6 | 336,94 |
C28.46D6 = C2xDic42 | φ: D6/C6 → C2 ⊆ Aut C28 | 336 | | C28.46D6 | 336,194 |
C28.47D6 = C8xD21 | φ: D6/C6 → C2 ⊆ Aut C28 | 168 | 2 | C28.47D6 | 336,90 |
C28.48D6 = C56:S3 | φ: D6/C6 → C2 ⊆ Aut C28 | 168 | 2 | C28.48D6 | 336,91 |
C28.49D6 = C2xC21:C8 | φ: D6/C6 → C2 ⊆ Aut C28 | 336 | | C28.49D6 | 336,95 |
C28.50D6 = C84.C4 | φ: D6/C6 → C2 ⊆ Aut C28 | 168 | 2 | C28.50D6 | 336,96 |
C28.51D6 = D84:11C2 | φ: D6/C6 → C2 ⊆ Aut C28 | 168 | 2 | C28.51D6 | 336,197 |
C28.52D6 = C7xC24:C2 | φ: D6/C6 → C2 ⊆ Aut C28 | 168 | 2 | C28.52D6 | 336,76 |
C28.53D6 = C7xD24 | φ: D6/C6 → C2 ⊆ Aut C28 | 168 | 2 | C28.53D6 | 336,77 |
C28.54D6 = C7xDic12 | φ: D6/C6 → C2 ⊆ Aut C28 | 336 | 2 | C28.54D6 | 336,78 |
C28.55D6 = C14xDic6 | φ: D6/C6 → C2 ⊆ Aut C28 | 336 | | C28.55D6 | 336,184 |
C28.56D6 = S3xC56 | central extension (φ=1) | 168 | 2 | C28.56D6 | 336,74 |
C28.57D6 = C7xC8:S3 | central extension (φ=1) | 168 | 2 | C28.57D6 | 336,75 |
C28.58D6 = C14xC3:C8 | central extension (φ=1) | 336 | | C28.58D6 | 336,79 |
C28.59D6 = C7xC4.Dic3 | central extension (φ=1) | 168 | 2 | C28.59D6 | 336,80 |
C28.60D6 = C7xC4oD12 | central extension (φ=1) | 168 | 2 | C28.60D6 | 336,187 |
x
:
Z
F
o
wr
Q
<