metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D165, C5⋊D33, C3⋊D55, C11⋊D15, C55⋊1S3, C33⋊1D5, C165⋊1C2, C15⋊1D11, sometimes denoted D330 or Dih165 or Dih330, SmallGroup(330,11)
Series: Derived ►Chief ►Lower central ►Upper central
C165 — D165 |
Generators and relations for D165
G = < a,b | a165=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165)
(2 165)(3 164)(4 163)(5 162)(6 161)(7 160)(8 159)(9 158)(10 157)(11 156)(12 155)(13 154)(14 153)(15 152)(16 151)(17 150)(18 149)(19 148)(20 147)(21 146)(22 145)(23 144)(24 143)(25 142)(26 141)(27 140)(28 139)(29 138)(30 137)(31 136)(32 135)(33 134)(34 133)(35 132)(36 131)(37 130)(38 129)(39 128)(40 127)(41 126)(42 125)(43 124)(44 123)(45 122)(46 121)(47 120)(48 119)(49 118)(50 117)(51 116)(52 115)(53 114)(54 113)(55 112)(56 111)(57 110)(58 109)(59 108)(60 107)(61 106)(62 105)(63 104)(64 103)(65 102)(66 101)(67 100)(68 99)(69 98)(70 97)(71 96)(72 95)(73 94)(74 93)(75 92)(76 91)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 84)
G:=sub<Sym(165)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165), (2,165)(3,164)(4,163)(5,162)(6,161)(7,160)(8,159)(9,158)(10,157)(11,156)(12,155)(13,154)(14,153)(15,152)(16,151)(17,150)(18,149)(19,148)(20,147)(21,146)(22,145)(23,144)(24,143)(25,142)(26,141)(27,140)(28,139)(29,138)(30,137)(31,136)(32,135)(33,134)(34,133)(35,132)(36,131)(37,130)(38,129)(39,128)(40,127)(41,126)(42,125)(43,124)(44,123)(45,122)(46,121)(47,120)(48,119)(49,118)(50,117)(51,116)(52,115)(53,114)(54,113)(55,112)(56,111)(57,110)(58,109)(59,108)(60,107)(61,106)(62,105)(63,104)(64,103)(65,102)(66,101)(67,100)(68,99)(69,98)(70,97)(71,96)(72,95)(73,94)(74,93)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165), (2,165)(3,164)(4,163)(5,162)(6,161)(7,160)(8,159)(9,158)(10,157)(11,156)(12,155)(13,154)(14,153)(15,152)(16,151)(17,150)(18,149)(19,148)(20,147)(21,146)(22,145)(23,144)(24,143)(25,142)(26,141)(27,140)(28,139)(29,138)(30,137)(31,136)(32,135)(33,134)(34,133)(35,132)(36,131)(37,130)(38,129)(39,128)(40,127)(41,126)(42,125)(43,124)(44,123)(45,122)(46,121)(47,120)(48,119)(49,118)(50,117)(51,116)(52,115)(53,114)(54,113)(55,112)(56,111)(57,110)(58,109)(59,108)(60,107)(61,106)(62,105)(63,104)(64,103)(65,102)(66,101)(67,100)(68,99)(69,98)(70,97)(71,96)(72,95)(73,94)(74,93)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)], [(2,165),(3,164),(4,163),(5,162),(6,161),(7,160),(8,159),(9,158),(10,157),(11,156),(12,155),(13,154),(14,153),(15,152),(16,151),(17,150),(18,149),(19,148),(20,147),(21,146),(22,145),(23,144),(24,143),(25,142),(26,141),(27,140),(28,139),(29,138),(30,137),(31,136),(32,135),(33,134),(34,133),(35,132),(36,131),(37,130),(38,129),(39,128),(40,127),(41,126),(42,125),(43,124),(44,123),(45,122),(46,121),(47,120),(48,119),(49,118),(50,117),(51,116),(52,115),(53,114),(54,113),(55,112),(56,111),(57,110),(58,109),(59,108),(60,107),(61,106),(62,105),(63,104),(64,103),(65,102),(66,101),(67,100),(68,99),(69,98),(70,97),(71,96),(72,95),(73,94),(74,93),(75,92),(76,91),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,84)]])
84 conjugacy classes
class | 1 | 2 | 3 | 5A | 5B | 11A | ··· | 11E | 15A | 15B | 15C | 15D | 33A | ··· | 33J | 55A | ··· | 55T | 165A | ··· | 165AN |
order | 1 | 2 | 3 | 5 | 5 | 11 | ··· | 11 | 15 | 15 | 15 | 15 | 33 | ··· | 33 | 55 | ··· | 55 | 165 | ··· | 165 |
size | 1 | 165 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
84 irreducible representations
dim | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | S3 | D5 | D11 | D15 | D33 | D55 | D165 |
kernel | D165 | C165 | C55 | C33 | C15 | C11 | C5 | C3 | C1 |
# reps | 1 | 1 | 1 | 2 | 5 | 4 | 10 | 20 | 40 |
Matrix representation of D165 ►in GL2(𝔽331) generated by
70 | 156 |
29 | 41 |
207 | 1 |
182 | 124 |
G:=sub<GL(2,GF(331))| [70,29,156,41],[207,182,1,124] >;
D165 in GAP, Magma, Sage, TeX
D_{165}
% in TeX
G:=Group("D165");
// GroupNames label
G:=SmallGroup(330,11);
// by ID
G=gap.SmallGroup(330,11);
# by ID
G:=PCGroup([4,-2,-3,-5,-11,33,290,4803]);
// Polycyclic
G:=Group<a,b|a^165=b^2=1,b*a*b=a^-1>;
// generators/relations
Export