Extensions 1→N→G→Q→1 with N=C21 and Q=C2xD4

Direct product G=NxQ with N=C21 and Q=C2xD4
dρLabelID
D4xC42168D4xC42336,205

Semidirect products G=N:Q with N=C21 and Q=C2xD4
extensionφ:Q→Aut NdρLabelID
C21:1(C2xD4) = D7xD12φ: C2xD4/C4C22 ⊆ Aut C21844+C21:1(C2xD4)336,148
C21:2(C2xD4) = S3xD28φ: C2xD4/C4C22 ⊆ Aut C21844+C21:2(C2xD4)336,149
C21:3(C2xD4) = C28:D6φ: C2xD4/C4C22 ⊆ Aut C21844C21:3(C2xD4)336,150
C21:4(C2xD4) = C2xC21:D4φ: C2xD4/C22C22 ⊆ Aut C21168C21:4(C2xD4)336,157
C21:5(C2xD4) = C2xC3:D28φ: C2xD4/C22C22 ⊆ Aut C21168C21:5(C2xD4)336,158
C21:6(C2xD4) = C2xC7:D12φ: C2xD4/C22C22 ⊆ Aut C21168C21:6(C2xD4)336,159
C21:7(C2xD4) = D7xC3:D4φ: C2xD4/C22C22 ⊆ Aut C21844C21:7(C2xD4)336,161
C21:8(C2xD4) = S3xC7:D4φ: C2xD4/C22C22 ⊆ Aut C21844C21:8(C2xD4)336,162
C21:9(C2xD4) = D6:D14φ: C2xD4/C22C22 ⊆ Aut C21844+C21:9(C2xD4)336,163
C21:10(C2xD4) = C2xD84φ: C2xD4/C2xC4C2 ⊆ Aut C21168C21:10(C2xD4)336,196
C21:11(C2xD4) = C6xD28φ: C2xD4/C2xC4C2 ⊆ Aut C21168C21:11(C2xD4)336,176
C21:12(C2xD4) = C14xD12φ: C2xD4/C2xC4C2 ⊆ Aut C21168C21:12(C2xD4)336,186
C21:13(C2xD4) = D4xD21φ: C2xD4/D4C2 ⊆ Aut C21844+C21:13(C2xD4)336,198
C21:14(C2xD4) = C3xD4xD7φ: C2xD4/D4C2 ⊆ Aut C21844C21:14(C2xD4)336,178
C21:15(C2xD4) = S3xC7xD4φ: C2xD4/D4C2 ⊆ Aut C21844C21:15(C2xD4)336,188
C21:16(C2xD4) = C2xC21:7D4φ: C2xD4/C23C2 ⊆ Aut C21168C21:16(C2xD4)336,203
C21:17(C2xD4) = C6xC7:D4φ: C2xD4/C23C2 ⊆ Aut C21168C21:17(C2xD4)336,183
C21:18(C2xD4) = C14xC3:D4φ: C2xD4/C23C2 ⊆ Aut C21168C21:18(C2xD4)336,193


׿
x
:
Z
F
o
wr
Q
<