Extensions 1→N→G→Q→1 with N=C21 and Q=C2×D4

Direct product G=N×Q with N=C21 and Q=C2×D4
dρLabelID
D4×C42168D4xC42336,205

Semidirect products G=N:Q with N=C21 and Q=C2×D4
extensionφ:Q→Aut NdρLabelID
C211(C2×D4) = D7×D12φ: C2×D4/C4C22 ⊆ Aut C21844+C21:1(C2xD4)336,148
C212(C2×D4) = S3×D28φ: C2×D4/C4C22 ⊆ Aut C21844+C21:2(C2xD4)336,149
C213(C2×D4) = C28⋊D6φ: C2×D4/C4C22 ⊆ Aut C21844C21:3(C2xD4)336,150
C214(C2×D4) = C2×C21⋊D4φ: C2×D4/C22C22 ⊆ Aut C21168C21:4(C2xD4)336,157
C215(C2×D4) = C2×C3⋊D28φ: C2×D4/C22C22 ⊆ Aut C21168C21:5(C2xD4)336,158
C216(C2×D4) = C2×C7⋊D12φ: C2×D4/C22C22 ⊆ Aut C21168C21:6(C2xD4)336,159
C217(C2×D4) = D7×C3⋊D4φ: C2×D4/C22C22 ⊆ Aut C21844C21:7(C2xD4)336,161
C218(C2×D4) = S3×C7⋊D4φ: C2×D4/C22C22 ⊆ Aut C21844C21:8(C2xD4)336,162
C219(C2×D4) = D6⋊D14φ: C2×D4/C22C22 ⊆ Aut C21844+C21:9(C2xD4)336,163
C2110(C2×D4) = C2×D84φ: C2×D4/C2×C4C2 ⊆ Aut C21168C21:10(C2xD4)336,196
C2111(C2×D4) = C6×D28φ: C2×D4/C2×C4C2 ⊆ Aut C21168C21:11(C2xD4)336,176
C2112(C2×D4) = C14×D12φ: C2×D4/C2×C4C2 ⊆ Aut C21168C21:12(C2xD4)336,186
C2113(C2×D4) = D4×D21φ: C2×D4/D4C2 ⊆ Aut C21844+C21:13(C2xD4)336,198
C2114(C2×D4) = C3×D4×D7φ: C2×D4/D4C2 ⊆ Aut C21844C21:14(C2xD4)336,178
C2115(C2×D4) = S3×C7×D4φ: C2×D4/D4C2 ⊆ Aut C21844C21:15(C2xD4)336,188
C2116(C2×D4) = C2×C217D4φ: C2×D4/C23C2 ⊆ Aut C21168C21:16(C2xD4)336,203
C2117(C2×D4) = C6×C7⋊D4φ: C2×D4/C23C2 ⊆ Aut C21168C21:17(C2xD4)336,183
C2118(C2×D4) = C14×C3⋊D4φ: C2×D4/C23C2 ⊆ Aut C21168C21:18(C2xD4)336,193


׿
×
𝔽