Extensions 1→N→G→Q→1 with N=D6 and Q=D14

Direct product G=N×Q with N=D6 and Q=D14
dρLabelID
C22×S3×D784C2^2xS3xD7336,219

Semidirect products G=N:Q with N=D6 and Q=D14
extensionφ:Q→Out NdρLabelID
D61D14 = D7×D12φ: D14/D7C2 ⊆ Out D6844+D6:1D14336,148
D62D14 = C28⋊D6φ: D14/D7C2 ⊆ Out D6844D6:2D14336,150
D63D14 = D7×C3⋊D4φ: D14/D7C2 ⊆ Out D6844D6:3D14336,161
D64D14 = D6⋊D14φ: D14/D7C2 ⊆ Out D6844+D6:4D14336,163
D65D14 = C2×C21⋊D4φ: D14/C14C2 ⊆ Out D6168D6:5D14336,157
D66D14 = C2×C7⋊D12φ: D14/C14C2 ⊆ Out D6168D6:6D14336,159
D67D14 = S3×C7⋊D4φ: D14/C14C2 ⊆ Out D6844D6:7D14336,162

Non-split extensions G=N.Q with N=D6 and Q=D14
extensionφ:Q→Out NdρLabelID
D6.1D14 = D12⋊D7φ: D14/D7C2 ⊆ Out D61684D6.1D14336,141
D6.2D14 = D125D7φ: D14/D7C2 ⊆ Out D61684-D6.2D14336,145
D6.3D14 = C42.C23φ: D14/D7C2 ⊆ Out D61684-D6.3D14336,153
D6.4D14 = Dic3.D14φ: D14/D7C2 ⊆ Out D61684D6.4D14336,155
D6.5D14 = D285S3φ: D14/C14C2 ⊆ Out D61684-D6.5D14336,138
D6.6D14 = D84⋊C2φ: D14/C14C2 ⊆ Out D61684+D6.6D14336,142
D6.7D14 = D6.D14φ: D14/C14C2 ⊆ Out D61684D6.7D14336,144
D6.8D14 = S3×Dic14φ: trivial image1684-D6.8D14336,140
D6.9D14 = C4×S3×D7φ: trivial image844D6.9D14336,147
D6.10D14 = S3×D28φ: trivial image844+D6.10D14336,149
D6.11D14 = C2×S3×Dic7φ: trivial image168D6.11D14336,154

׿
×
𝔽