Extensions 1→N→G→Q→1 with N=D6 and Q=D14

Direct product G=NxQ with N=D6 and Q=D14
dρLabelID
C22xS3xD784C2^2xS3xD7336,219

Semidirect products G=N:Q with N=D6 and Q=D14
extensionφ:Q→Out NdρLabelID
D6:1D14 = D7xD12φ: D14/D7C2 ⊆ Out D6844+D6:1D14336,148
D6:2D14 = C28:D6φ: D14/D7C2 ⊆ Out D6844D6:2D14336,150
D6:3D14 = D7xC3:D4φ: D14/D7C2 ⊆ Out D6844D6:3D14336,161
D6:4D14 = D6:D14φ: D14/D7C2 ⊆ Out D6844+D6:4D14336,163
D6:5D14 = C2xC21:D4φ: D14/C14C2 ⊆ Out D6168D6:5D14336,157
D6:6D14 = C2xC7:D12φ: D14/C14C2 ⊆ Out D6168D6:6D14336,159
D6:7D14 = S3xC7:D4φ: D14/C14C2 ⊆ Out D6844D6:7D14336,162

Non-split extensions G=N.Q with N=D6 and Q=D14
extensionφ:Q→Out NdρLabelID
D6.1D14 = D12:D7φ: D14/D7C2 ⊆ Out D61684D6.1D14336,141
D6.2D14 = D12:5D7φ: D14/D7C2 ⊆ Out D61684-D6.2D14336,145
D6.3D14 = C42.C23φ: D14/D7C2 ⊆ Out D61684-D6.3D14336,153
D6.4D14 = Dic3.D14φ: D14/D7C2 ⊆ Out D61684D6.4D14336,155
D6.5D14 = D28:5S3φ: D14/C14C2 ⊆ Out D61684-D6.5D14336,138
D6.6D14 = D84:C2φ: D14/C14C2 ⊆ Out D61684+D6.6D14336,142
D6.7D14 = D6.D14φ: D14/C14C2 ⊆ Out D61684D6.7D14336,144
D6.8D14 = S3xDic14φ: trivial image1684-D6.8D14336,140
D6.9D14 = C4xS3xD7φ: trivial image844D6.9D14336,147
D6.10D14 = S3xD28φ: trivial image844+D6.10D14336,149
D6.11D14 = C2xS3xDic7φ: trivial image168D6.11D14336,154

׿
x
:
Z
F
o
wr
Q
<