extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×D5) = Dic3×D15 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C6 | 120 | 4- | C6.1(S3xD5) | 360,77 |
C6.2(S3×D5) = S3×Dic15 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C6 | 120 | 4- | C6.2(S3xD5) | 360,78 |
C6.3(S3×D5) = C6.D30 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C6 | 60 | 4+ | C6.3(S3xD5) | 360,79 |
C6.4(S3×D5) = D6⋊D15 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C6 | 120 | 4- | C6.4(S3xD5) | 360,80 |
C6.5(S3×D5) = C3⋊D60 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C6 | 60 | 4+ | C6.5(S3xD5) | 360,81 |
C6.6(S3×D5) = D6⋊2D15 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C6 | 60 | 4+ | C6.6(S3xD5) | 360,82 |
C6.7(S3×D5) = C3⋊Dic30 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C6 | 120 | 4- | C6.7(S3xD5) | 360,83 |
C6.8(S3×D5) = C45⋊Q8 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 360 | 4- | C6.8(S3xD5) | 360,7 |
C6.9(S3×D5) = D9×Dic5 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | 4- | C6.9(S3xD5) | 360,8 |
C6.10(S3×D5) = D90.C2 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | 4+ | C6.10(S3xD5) | 360,9 |
C6.11(S3×D5) = C5⋊D36 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | 4+ | C6.11(S3xD5) | 360,10 |
C6.12(S3×D5) = D5×Dic9 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | 4- | C6.12(S3xD5) | 360,11 |
C6.13(S3×D5) = C45⋊D4 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | 4- | C6.13(S3xD5) | 360,12 |
C6.14(S3×D5) = C9⋊D20 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | 4+ | C6.14(S3xD5) | 360,13 |
C6.15(S3×D5) = C2×D5×D9 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 90 | 4+ | C6.15(S3xD5) | 360,45 |
C6.16(S3×D5) = D5×C3⋊Dic3 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | | C6.16(S3xD5) | 360,65 |
C6.17(S3×D5) = C3⋊S3×Dic5 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | | C6.17(S3xD5) | 360,66 |
C6.18(S3×D5) = C30.D6 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | | C6.18(S3xD5) | 360,67 |
C6.19(S3×D5) = C30.12D6 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | | C6.19(S3xD5) | 360,68 |
C6.20(S3×D5) = C32⋊7D20 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | | C6.20(S3xD5) | 360,69 |
C6.21(S3×D5) = C15⋊D12 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 180 | | C6.21(S3xD5) | 360,70 |
C6.22(S3×D5) = C15⋊Dic6 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C6 | 360 | | C6.22(S3xD5) | 360,71 |
C6.23(S3×D5) = D30.S3 | φ: S3×D5/D15 → C2 ⊆ Aut C6 | 120 | 4 | C6.23(S3xD5) | 360,84 |
C6.24(S3×D5) = Dic15⋊S3 | φ: S3×D5/D15 → C2 ⊆ Aut C6 | 60 | 4 | C6.24(S3xD5) | 360,85 |
C6.25(S3×D5) = D30⋊S3 | φ: S3×D5/D15 → C2 ⊆ Aut C6 | 60 | 4 | C6.25(S3xD5) | 360,86 |
C6.26(S3×D5) = C32⋊3D20 | φ: S3×D5/D15 → C2 ⊆ Aut C6 | 120 | 4 | C6.26(S3xD5) | 360,87 |
C6.27(S3×D5) = C32⋊3Dic10 | φ: S3×D5/D15 → C2 ⊆ Aut C6 | 120 | 4 | C6.27(S3xD5) | 360,88 |
C6.28(S3×D5) = C3×D5×Dic3 | central extension (φ=1) | 60 | 4 | C6.28(S3xD5) | 360,58 |
C6.29(S3×D5) = C3×S3×Dic5 | central extension (φ=1) | 120 | 4 | C6.29(S3xD5) | 360,59 |
C6.30(S3×D5) = C3×D30.C2 | central extension (φ=1) | 120 | 4 | C6.30(S3xD5) | 360,60 |
C6.31(S3×D5) = C3×C15⋊D4 | central extension (φ=1) | 60 | 4 | C6.31(S3xD5) | 360,61 |
C6.32(S3×D5) = C3×C3⋊D20 | central extension (φ=1) | 60 | 4 | C6.32(S3xD5) | 360,62 |
C6.33(S3×D5) = C3×C5⋊D12 | central extension (φ=1) | 120 | 4 | C6.33(S3xD5) | 360,63 |
C6.34(S3×D5) = C3×C15⋊Q8 | central extension (φ=1) | 120 | 4 | C6.34(S3xD5) | 360,64 |