Copied to
clipboard

G = C7×C3⋊F5order 420 = 22·3·5·7

Direct product of C7 and C3⋊F5

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C7×C3⋊F5, C213F5, C151C28, C1053C4, C352Dic3, C3⋊(C7×F5), C5⋊(C7×Dic3), D5.(S3×C7), (C7×D5).2S3, (D5×C21).3C2, (C3×D5).1C14, SmallGroup(420,22)

Series: Derived Chief Lower central Upper central

C1C15 — C7×C3⋊F5
C1C5C15C3×D5D5×C21 — C7×C3⋊F5
C15 — C7×C3⋊F5
C1C7

Generators and relations for C7×C3⋊F5
 G = < a,b,c,d | a7=b3=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

5C2
15C4
5C6
5C14
5Dic3
3F5
15C28
5C42
5C7×Dic3
3C7×F5

Smallest permutation representation of C7×C3⋊F5
On 105 points
Generators in S105
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)
(1 54 94)(2 55 95)(3 56 96)(4 50 97)(5 51 98)(6 52 92)(7 53 93)(8 39 58)(9 40 59)(10 41 60)(11 42 61)(12 36 62)(13 37 63)(14 38 57)(15 85 65)(16 86 66)(17 87 67)(18 88 68)(19 89 69)(20 90 70)(21 91 64)(22 100 43)(23 101 44)(24 102 45)(25 103 46)(26 104 47)(27 105 48)(28 99 49)(29 75 79)(30 76 80)(31 77 81)(32 71 82)(33 72 83)(34 73 84)(35 74 78)
(1 70 79 102 59)(2 64 80 103 60)(3 65 81 104 61)(4 66 82 105 62)(5 67 83 99 63)(6 68 84 100 57)(7 69 78 101 58)(8 53 19 35 44)(9 54 20 29 45)(10 55 21 30 46)(11 56 15 31 47)(12 50 16 32 48)(13 51 17 33 49)(14 52 18 34 43)(22 38 92 88 73)(23 39 93 89 74)(24 40 94 90 75)(25 41 95 91 76)(26 42 96 85 77)(27 36 97 86 71)(28 37 98 87 72)
(8 23 19 74)(9 24 20 75)(10 25 21 76)(11 26 15 77)(12 27 16 71)(13 28 17 72)(14 22 18 73)(29 40 45 90)(30 41 46 91)(31 42 47 85)(32 36 48 86)(33 37 49 87)(34 38 43 88)(35 39 44 89)(50 97)(51 98)(52 92)(53 93)(54 94)(55 95)(56 96)(57 100 68 84)(58 101 69 78)(59 102 70 79)(60 103 64 80)(61 104 65 81)(62 105 66 82)(63 99 67 83)

G:=sub<Sym(105)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105), (1,54,94)(2,55,95)(3,56,96)(4,50,97)(5,51,98)(6,52,92)(7,53,93)(8,39,58)(9,40,59)(10,41,60)(11,42,61)(12,36,62)(13,37,63)(14,38,57)(15,85,65)(16,86,66)(17,87,67)(18,88,68)(19,89,69)(20,90,70)(21,91,64)(22,100,43)(23,101,44)(24,102,45)(25,103,46)(26,104,47)(27,105,48)(28,99,49)(29,75,79)(30,76,80)(31,77,81)(32,71,82)(33,72,83)(34,73,84)(35,74,78), (1,70,79,102,59)(2,64,80,103,60)(3,65,81,104,61)(4,66,82,105,62)(5,67,83,99,63)(6,68,84,100,57)(7,69,78,101,58)(8,53,19,35,44)(9,54,20,29,45)(10,55,21,30,46)(11,56,15,31,47)(12,50,16,32,48)(13,51,17,33,49)(14,52,18,34,43)(22,38,92,88,73)(23,39,93,89,74)(24,40,94,90,75)(25,41,95,91,76)(26,42,96,85,77)(27,36,97,86,71)(28,37,98,87,72), (8,23,19,74)(9,24,20,75)(10,25,21,76)(11,26,15,77)(12,27,16,71)(13,28,17,72)(14,22,18,73)(29,40,45,90)(30,41,46,91)(31,42,47,85)(32,36,48,86)(33,37,49,87)(34,38,43,88)(35,39,44,89)(50,97)(51,98)(52,92)(53,93)(54,94)(55,95)(56,96)(57,100,68,84)(58,101,69,78)(59,102,70,79)(60,103,64,80)(61,104,65,81)(62,105,66,82)(63,99,67,83)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105), (1,54,94)(2,55,95)(3,56,96)(4,50,97)(5,51,98)(6,52,92)(7,53,93)(8,39,58)(9,40,59)(10,41,60)(11,42,61)(12,36,62)(13,37,63)(14,38,57)(15,85,65)(16,86,66)(17,87,67)(18,88,68)(19,89,69)(20,90,70)(21,91,64)(22,100,43)(23,101,44)(24,102,45)(25,103,46)(26,104,47)(27,105,48)(28,99,49)(29,75,79)(30,76,80)(31,77,81)(32,71,82)(33,72,83)(34,73,84)(35,74,78), (1,70,79,102,59)(2,64,80,103,60)(3,65,81,104,61)(4,66,82,105,62)(5,67,83,99,63)(6,68,84,100,57)(7,69,78,101,58)(8,53,19,35,44)(9,54,20,29,45)(10,55,21,30,46)(11,56,15,31,47)(12,50,16,32,48)(13,51,17,33,49)(14,52,18,34,43)(22,38,92,88,73)(23,39,93,89,74)(24,40,94,90,75)(25,41,95,91,76)(26,42,96,85,77)(27,36,97,86,71)(28,37,98,87,72), (8,23,19,74)(9,24,20,75)(10,25,21,76)(11,26,15,77)(12,27,16,71)(13,28,17,72)(14,22,18,73)(29,40,45,90)(30,41,46,91)(31,42,47,85)(32,36,48,86)(33,37,49,87)(34,38,43,88)(35,39,44,89)(50,97)(51,98)(52,92)(53,93)(54,94)(55,95)(56,96)(57,100,68,84)(58,101,69,78)(59,102,70,79)(60,103,64,80)(61,104,65,81)(62,105,66,82)(63,99,67,83) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105)], [(1,54,94),(2,55,95),(3,56,96),(4,50,97),(5,51,98),(6,52,92),(7,53,93),(8,39,58),(9,40,59),(10,41,60),(11,42,61),(12,36,62),(13,37,63),(14,38,57),(15,85,65),(16,86,66),(17,87,67),(18,88,68),(19,89,69),(20,90,70),(21,91,64),(22,100,43),(23,101,44),(24,102,45),(25,103,46),(26,104,47),(27,105,48),(28,99,49),(29,75,79),(30,76,80),(31,77,81),(32,71,82),(33,72,83),(34,73,84),(35,74,78)], [(1,70,79,102,59),(2,64,80,103,60),(3,65,81,104,61),(4,66,82,105,62),(5,67,83,99,63),(6,68,84,100,57),(7,69,78,101,58),(8,53,19,35,44),(9,54,20,29,45),(10,55,21,30,46),(11,56,15,31,47),(12,50,16,32,48),(13,51,17,33,49),(14,52,18,34,43),(22,38,92,88,73),(23,39,93,89,74),(24,40,94,90,75),(25,41,95,91,76),(26,42,96,85,77),(27,36,97,86,71),(28,37,98,87,72)], [(8,23,19,74),(9,24,20,75),(10,25,21,76),(11,26,15,77),(12,27,16,71),(13,28,17,72),(14,22,18,73),(29,40,45,90),(30,41,46,91),(31,42,47,85),(32,36,48,86),(33,37,49,87),(34,38,43,88),(35,39,44,89),(50,97),(51,98),(52,92),(53,93),(54,94),(55,95),(56,96),(57,100,68,84),(58,101,69,78),(59,102,70,79),(60,103,64,80),(61,104,65,81),(62,105,66,82),(63,99,67,83)]])

63 conjugacy classes

class 1  2  3 4A4B 5  6 7A···7F14A···14F15A15B21A···21F28A···28L35A···35F42A···42F105A···105L
order12344567···714···14151521···2128···2835···3542···42105···105
size15215154101···15···5442···215···154···410···104···4

63 irreducible representations

dim11111122224444
type+++-+
imageC1C2C4C7C14C28S3Dic3S3×C7C7×Dic3F5C3⋊F5C7×F5C7×C3⋊F5
kernelC7×C3⋊F5D5×C21C105C3⋊F5C3×D5C15C7×D5C35D5C5C21C7C3C1
# reps1126612116612612

Matrix representation of C7×C3⋊F5 in GL6(𝔽421)

100000
010000
0075000
0007500
0000750
0000075
,
1001690000
53200000
001000
000100
000010
000001
,
100000
010000
000100
000010
000001
00420420420420
,
182200000
2764030000
001890377377
003773770189
0044233440
00232188188232

G:=sub<GL(6,GF(421))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,75,0,0,0,0,0,0,75,0,0,0,0,0,0,75,0,0,0,0,0,0,75],[100,5,0,0,0,0,169,320,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,420,0,0,1,0,0,420,0,0,0,1,0,420,0,0,0,0,1,420],[18,276,0,0,0,0,220,403,0,0,0,0,0,0,189,377,44,232,0,0,0,377,233,188,0,0,377,0,44,188,0,0,377,189,0,232] >;

C7×C3⋊F5 in GAP, Magma, Sage, TeX

C_7\times C_3\rtimes F_5
% in TeX

G:=Group("C7xC3:F5");
// GroupNames label

G:=SmallGroup(420,22);
// by ID

G=gap.SmallGroup(420,22);
# by ID

G:=PCGroup([5,-2,-7,-2,-3,-5,70,1123,6304,614]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^3=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C7×C3⋊F5 in TeX

׿
×
𝔽