direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D210, C2×D105, C6⋊D35, C10⋊D21, C14⋊D15, C35⋊7D6, C5⋊2D42, C3⋊2D70, C7⋊2D30, C70⋊1S3, C42⋊1D5, C30⋊1D7, C21⋊7D10, C15⋊7D14, C210⋊1C2, C105⋊8C22, sometimes denoted D420 or Dih210 or Dih420, SmallGroup(420,40)
Series: Derived ►Chief ►Lower central ►Upper central
C105 — D210 |
Generators and relations for D210
G = < a,b | a210=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)
(1 210)(2 209)(3 208)(4 207)(5 206)(6 205)(7 204)(8 203)(9 202)(10 201)(11 200)(12 199)(13 198)(14 197)(15 196)(16 195)(17 194)(18 193)(19 192)(20 191)(21 190)(22 189)(23 188)(24 187)(25 186)(26 185)(27 184)(28 183)(29 182)(30 181)(31 180)(32 179)(33 178)(34 177)(35 176)(36 175)(37 174)(38 173)(39 172)(40 171)(41 170)(42 169)(43 168)(44 167)(45 166)(46 165)(47 164)(48 163)(49 162)(50 161)(51 160)(52 159)(53 158)(54 157)(55 156)(56 155)(57 154)(58 153)(59 152)(60 151)(61 150)(62 149)(63 148)(64 147)(65 146)(66 145)(67 144)(68 143)(69 142)(70 141)(71 140)(72 139)(73 138)(74 137)(75 136)(76 135)(77 134)(78 133)(79 132)(80 131)(81 130)(82 129)(83 128)(84 127)(85 126)(86 125)(87 124)(88 123)(89 122)(90 121)(91 120)(92 119)(93 118)(94 117)(95 116)(96 115)(97 114)(98 113)(99 112)(100 111)(101 110)(102 109)(103 108)(104 107)(105 106)
G:=sub<Sym(210)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210), (1,210)(2,209)(3,208)(4,207)(5,206)(6,205)(7,204)(8,203)(9,202)(10,201)(11,200)(12,199)(13,198)(14,197)(15,196)(16,195)(17,194)(18,193)(19,192)(20,191)(21,190)(22,189)(23,188)(24,187)(25,186)(26,185)(27,184)(28,183)(29,182)(30,181)(31,180)(32,179)(33,178)(34,177)(35,176)(36,175)(37,174)(38,173)(39,172)(40,171)(41,170)(42,169)(43,168)(44,167)(45,166)(46,165)(47,164)(48,163)(49,162)(50,161)(51,160)(52,159)(53,158)(54,157)(55,156)(56,155)(57,154)(58,153)(59,152)(60,151)(61,150)(62,149)(63,148)(64,147)(65,146)(66,145)(67,144)(68,143)(69,142)(70,141)(71,140)(72,139)(73,138)(74,137)(75,136)(76,135)(77,134)(78,133)(79,132)(80,131)(81,130)(82,129)(83,128)(84,127)(85,126)(86,125)(87,124)(88,123)(89,122)(90,121)(91,120)(92,119)(93,118)(94,117)(95,116)(96,115)(97,114)(98,113)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210), (1,210)(2,209)(3,208)(4,207)(5,206)(6,205)(7,204)(8,203)(9,202)(10,201)(11,200)(12,199)(13,198)(14,197)(15,196)(16,195)(17,194)(18,193)(19,192)(20,191)(21,190)(22,189)(23,188)(24,187)(25,186)(26,185)(27,184)(28,183)(29,182)(30,181)(31,180)(32,179)(33,178)(34,177)(35,176)(36,175)(37,174)(38,173)(39,172)(40,171)(41,170)(42,169)(43,168)(44,167)(45,166)(46,165)(47,164)(48,163)(49,162)(50,161)(51,160)(52,159)(53,158)(54,157)(55,156)(56,155)(57,154)(58,153)(59,152)(60,151)(61,150)(62,149)(63,148)(64,147)(65,146)(66,145)(67,144)(68,143)(69,142)(70,141)(71,140)(72,139)(73,138)(74,137)(75,136)(76,135)(77,134)(78,133)(79,132)(80,131)(81,130)(82,129)(83,128)(84,127)(85,126)(86,125)(87,124)(88,123)(89,122)(90,121)(91,120)(92,119)(93,118)(94,117)(95,116)(96,115)(97,114)(98,113)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)], [(1,210),(2,209),(3,208),(4,207),(5,206),(6,205),(7,204),(8,203),(9,202),(10,201),(11,200),(12,199),(13,198),(14,197),(15,196),(16,195),(17,194),(18,193),(19,192),(20,191),(21,190),(22,189),(23,188),(24,187),(25,186),(26,185),(27,184),(28,183),(29,182),(30,181),(31,180),(32,179),(33,178),(34,177),(35,176),(36,175),(37,174),(38,173),(39,172),(40,171),(41,170),(42,169),(43,168),(44,167),(45,166),(46,165),(47,164),(48,163),(49,162),(50,161),(51,160),(52,159),(53,158),(54,157),(55,156),(56,155),(57,154),(58,153),(59,152),(60,151),(61,150),(62,149),(63,148),(64,147),(65,146),(66,145),(67,144),(68,143),(69,142),(70,141),(71,140),(72,139),(73,138),(74,137),(75,136),(76,135),(77,134),(78,133),(79,132),(80,131),(81,130),(82,129),(83,128),(84,127),(85,126),(86,125),(87,124),(88,123),(89,122),(90,121),(91,120),(92,119),(93,118),(94,117),(95,116),(96,115),(97,114),(98,113),(99,112),(100,111),(101,110),(102,109),(103,108),(104,107),(105,106)]])
108 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 5A | 5B | 6 | 7A | 7B | 7C | 10A | 10B | 14A | 14B | 14C | 15A | 15B | 15C | 15D | 21A | ··· | 21F | 30A | 30B | 30C | 30D | 35A | ··· | 35L | 42A | ··· | 42F | 70A | ··· | 70L | 105A | ··· | 105X | 210A | ··· | 210X |
order | 1 | 2 | 2 | 2 | 3 | 5 | 5 | 6 | 7 | 7 | 7 | 10 | 10 | 14 | 14 | 14 | 15 | 15 | 15 | 15 | 21 | ··· | 21 | 30 | 30 | 30 | 30 | 35 | ··· | 35 | 42 | ··· | 42 | 70 | ··· | 70 | 105 | ··· | 105 | 210 | ··· | 210 |
size | 1 | 1 | 105 | 105 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
108 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D5 | D6 | D7 | D10 | D14 | D15 | D21 | D30 | D35 | D42 | D70 | D105 | D210 |
kernel | D210 | D105 | C210 | C70 | C42 | C35 | C30 | C21 | C15 | C14 | C10 | C7 | C6 | C5 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 3 | 4 | 6 | 4 | 12 | 6 | 12 | 24 | 24 |
Matrix representation of D210 ►in GL3(𝔽211) generated by
210 | 0 | 0 |
0 | 115 | 93 |
0 | 118 | 178 |
1 | 0 | 0 |
0 | 73 | 62 |
0 | 57 | 138 |
G:=sub<GL(3,GF(211))| [210,0,0,0,115,118,0,93,178],[1,0,0,0,73,57,0,62,138] >;
D210 in GAP, Magma, Sage, TeX
D_{210}
% in TeX
G:=Group("D210");
// GroupNames label
G:=SmallGroup(420,40);
// by ID
G=gap.SmallGroup(420,40);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,-7,122,963,9004]);
// Polycyclic
G:=Group<a,b|a^210=b^2=1,b*a*b=a^-1>;
// generators/relations
Export