Copied to
clipboard

G = F5×C21order 420 = 22·3·5·7

Direct product of C21 and F5

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: F5×C21, C5⋊C84, C357C12, C152C28, C1054C4, D5.C42, (C7×D5).4C6, (C3×D5).2C14, (D5×C21).4C2, SmallGroup(420,20)

Series: Derived Chief Lower central Upper central

C1C5 — F5×C21
C1C5D5C7×D5D5×C21 — F5×C21
C5 — F5×C21
C1C21

Generators and relations for F5×C21
 G = < a,b,c | a21=b5=c4=1, ab=ba, ac=ca, cbc-1=b3 >

5C2
5C4
5C6
5C14
5C12
5C28
5C42
5C84

Smallest permutation representation of F5×C21
On 105 points
Generators in S105
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)
(1 51 23 83 103)(2 52 24 84 104)(3 53 25 64 105)(4 54 26 65 85)(5 55 27 66 86)(6 56 28 67 87)(7 57 29 68 88)(8 58 30 69 89)(9 59 31 70 90)(10 60 32 71 91)(11 61 33 72 92)(12 62 34 73 93)(13 63 35 74 94)(14 43 36 75 95)(15 44 37 76 96)(16 45 38 77 97)(17 46 39 78 98)(18 47 40 79 99)(19 48 41 80 100)(20 49 42 81 101)(21 50 22 82 102)
(22 102 82 50)(23 103 83 51)(24 104 84 52)(25 105 64 53)(26 85 65 54)(27 86 66 55)(28 87 67 56)(29 88 68 57)(30 89 69 58)(31 90 70 59)(32 91 71 60)(33 92 72 61)(34 93 73 62)(35 94 74 63)(36 95 75 43)(37 96 76 44)(38 97 77 45)(39 98 78 46)(40 99 79 47)(41 100 80 48)(42 101 81 49)

G:=sub<Sym(105)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,51,23,83,103)(2,52,24,84,104)(3,53,25,64,105)(4,54,26,65,85)(5,55,27,66,86)(6,56,28,67,87)(7,57,29,68,88)(8,58,30,69,89)(9,59,31,70,90)(10,60,32,71,91)(11,61,33,72,92)(12,62,34,73,93)(13,63,35,74,94)(14,43,36,75,95)(15,44,37,76,96)(16,45,38,77,97)(17,46,39,78,98)(18,47,40,79,99)(19,48,41,80,100)(20,49,42,81,101)(21,50,22,82,102), (22,102,82,50)(23,103,83,51)(24,104,84,52)(25,105,64,53)(26,85,65,54)(27,86,66,55)(28,87,67,56)(29,88,68,57)(30,89,69,58)(31,90,70,59)(32,91,71,60)(33,92,72,61)(34,93,73,62)(35,94,74,63)(36,95,75,43)(37,96,76,44)(38,97,77,45)(39,98,78,46)(40,99,79,47)(41,100,80,48)(42,101,81,49)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,51,23,83,103)(2,52,24,84,104)(3,53,25,64,105)(4,54,26,65,85)(5,55,27,66,86)(6,56,28,67,87)(7,57,29,68,88)(8,58,30,69,89)(9,59,31,70,90)(10,60,32,71,91)(11,61,33,72,92)(12,62,34,73,93)(13,63,35,74,94)(14,43,36,75,95)(15,44,37,76,96)(16,45,38,77,97)(17,46,39,78,98)(18,47,40,79,99)(19,48,41,80,100)(20,49,42,81,101)(21,50,22,82,102), (22,102,82,50)(23,103,83,51)(24,104,84,52)(25,105,64,53)(26,85,65,54)(27,86,66,55)(28,87,67,56)(29,88,68,57)(30,89,69,58)(31,90,70,59)(32,91,71,60)(33,92,72,61)(34,93,73,62)(35,94,74,63)(36,95,75,43)(37,96,76,44)(38,97,77,45)(39,98,78,46)(40,99,79,47)(41,100,80,48)(42,101,81,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)], [(1,51,23,83,103),(2,52,24,84,104),(3,53,25,64,105),(4,54,26,65,85),(5,55,27,66,86),(6,56,28,67,87),(7,57,29,68,88),(8,58,30,69,89),(9,59,31,70,90),(10,60,32,71,91),(11,61,33,72,92),(12,62,34,73,93),(13,63,35,74,94),(14,43,36,75,95),(15,44,37,76,96),(16,45,38,77,97),(17,46,39,78,98),(18,47,40,79,99),(19,48,41,80,100),(20,49,42,81,101),(21,50,22,82,102)], [(22,102,82,50),(23,103,83,51),(24,104,84,52),(25,105,64,53),(26,85,65,54),(27,86,66,55),(28,87,67,56),(29,88,68,57),(30,89,69,58),(31,90,70,59),(32,91,71,60),(33,92,72,61),(34,93,73,62),(35,94,74,63),(36,95,75,43),(37,96,76,44),(38,97,77,45),(39,98,78,46),(40,99,79,47),(41,100,80,48),(42,101,81,49)]])

105 conjugacy classes

class 1  2 3A3B4A4B 5 6A6B7A···7F12A12B12C12D14A···14F15A15B21A···21L28A···28L35A···35F42A···42L84A···84X105A···105L
order1233445667···71212121214···14151521···2128···2835···3542···4284···84105···105
size1511554551···155555···5441···15···54···45···55···54···4

105 irreducible representations

dim1111111111114444
type+++
imageC1C2C3C4C6C7C12C14C21C28C42C84F5C3×F5C7×F5F5×C21
kernelF5×C21D5×C21C7×F5C105C7×D5C3×F5C35C3×D5F5C15D5C5C21C7C3C1
# reps112226461212122412612

Matrix representation of F5×C21 in GL4(𝔽421) generated by

229000
022900
002290
000229
,
420420420420
1000
0100
0010
,
1000
0001
0100
420420420420
G:=sub<GL(4,GF(421))| [229,0,0,0,0,229,0,0,0,0,229,0,0,0,0,229],[420,1,0,0,420,0,1,0,420,0,0,1,420,0,0,0],[1,0,0,420,0,0,1,420,0,0,0,420,0,1,0,420] >;

F5×C21 in GAP, Magma, Sage, TeX

F_5\times C_{21}
% in TeX

G:=Group("F5xC21");
// GroupNames label

G:=SmallGroup(420,20);
// by ID

G=gap.SmallGroup(420,20);
# by ID

G:=PCGroup([5,-2,-3,-7,-2,-5,210,4204,219]);
// Polycyclic

G:=Group<a,b,c|a^21=b^5=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of F5×C21 in TeX

׿
×
𝔽