extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C3×D4) = C3×S32⋊C4 | φ: C3×D4/C3 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).1(C3xD4) | 432,574 |
(C3×C6).2(C3×D4) = C3×C3⋊S3.Q8 | φ: C3×D4/C3 → D4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).2(C3xD4) | 432,575 |
(C3×C6).3(C3×D4) = C3×C32⋊D8 | φ: C3×D4/C3 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).3(C3xD4) | 432,576 |
(C3×C6).4(C3×D4) = C3×C32⋊2SD16 | φ: C3×D4/C3 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).4(C3xD4) | 432,577 |
(C3×C6).5(C3×D4) = C3×C32⋊Q16 | φ: C3×D4/C3 → D4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).5(C3xD4) | 432,578 |
(C3×C6).6(C3×D4) = He3⋊4Q16 | φ: C3×D4/C4 → C6 ⊆ Aut C3×C6 | 144 | 6- | (C3xC6).6(C3xD4) | 432,114 |
(C3×C6).7(C3×D4) = He3⋊6SD16 | φ: C3×D4/C4 → C6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).7(C3xD4) | 432,117 |
(C3×C6).8(C3×D4) = He3⋊4D8 | φ: C3×D4/C4 → C6 ⊆ Aut C3×C6 | 72 | 6+ | (C3xC6).8(C3xD4) | 432,118 |
(C3×C6).9(C3×D4) = C62.20D6 | φ: C3×D4/C4 → C6 ⊆ Aut C3×C6 | 144 | | (C3xC6).9(C3xD4) | 432,140 |
(C3×C6).10(C3×D4) = C62.21D6 | φ: C3×D4/C4 → C6 ⊆ Aut C3×C6 | 72 | | (C3xC6).10(C3xD4) | 432,141 |
(C3×C6).11(C3×D4) = C62.19D6 | φ: C3×D4/C22 → C6 ⊆ Aut C3×C6 | 144 | | (C3xC6).11(C3xD4) | 432,139 |
(C3×C6).12(C3×D4) = He3⋊8SD16 | φ: C3×D4/C22 → C6 ⊆ Aut C3×C6 | 72 | 12- | (C3xC6).12(C3xD4) | 432,152 |
(C3×C6).13(C3×D4) = He3⋊6D8 | φ: C3×D4/C22 → C6 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).13(C3xD4) | 432,153 |
(C3×C6).14(C3×D4) = He3⋊6Q16 | φ: C3×D4/C22 → C6 ⊆ Aut C3×C6 | 144 | 12- | (C3xC6).14(C3xD4) | 432,160 |
(C3×C6).15(C3×D4) = He3⋊10SD16 | φ: C3×D4/C22 → C6 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).15(C3xD4) | 432,161 |
(C3×C6).16(C3×D4) = C62⋊3C12 | φ: C3×D4/C22 → C6 ⊆ Aut C3×C6 | 72 | | (C3xC6).16(C3xD4) | 432,166 |
(C3×C6).17(C3×D4) = C3×C32⋊2D8 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).17(C3xD4) | 432,418 |
(C3×C6).18(C3×D4) = C3×C3⋊D24 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).18(C3xD4) | 432,419 |
(C3×C6).19(C3×D4) = C3×Dic6⋊S3 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).19(C3xD4) | 432,420 |
(C3×C6).20(C3×D4) = C3×D12.S3 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).20(C3xD4) | 432,421 |
(C3×C6).21(C3×D4) = C3×C32⋊5SD16 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).21(C3xD4) | 432,422 |
(C3×C6).22(C3×D4) = C3×C32⋊2Q16 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).22(C3xD4) | 432,423 |
(C3×C6).23(C3×D4) = C3×C32⋊3Q16 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).23(C3xD4) | 432,424 |
(C3×C6).24(C3×D4) = C3×D6⋊Dic3 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).24(C3xD4) | 432,426 |
(C3×C6).25(C3×D4) = C3×C6.D12 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).25(C3xD4) | 432,427 |
(C3×C6).26(C3×D4) = C3×Dic3⋊Dic3 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).26(C3xD4) | 432,428 |
(C3×C6).27(C3×D4) = C3×C62.C22 | φ: C3×D4/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).27(C3xD4) | 432,429 |
(C3×C6).28(C3×D4) = C22⋊C4×He3 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 72 | | (C3xC6).28(C3xD4) | 432,204 |
(C3×C6).29(C3×D4) = C22⋊C4×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 72 | | (C3xC6).29(C3xD4) | 432,205 |
(C3×C6).30(C3×D4) = C4⋊C4×He3 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 144 | | (C3xC6).30(C3xD4) | 432,207 |
(C3×C6).31(C3×D4) = C4⋊C4×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 144 | | (C3xC6).31(C3xD4) | 432,208 |
(C3×C6).32(C3×D4) = D8×He3 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).32(C3xD4) | 432,216 |
(C3×C6).33(C3×D4) = D8×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).33(C3xD4) | 432,217 |
(C3×C6).34(C3×D4) = SD16×He3 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).34(C3xD4) | 432,219 |
(C3×C6).35(C3×D4) = SD16×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).35(C3xD4) | 432,220 |
(C3×C6).36(C3×D4) = Q16×He3 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 144 | 6 | (C3xC6).36(C3xD4) | 432,222 |
(C3×C6).37(C3×D4) = Q16×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 144 | 6 | (C3xC6).37(C3xD4) | 432,223 |
(C3×C6).38(C3×D4) = C2×D4×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C3×C6 | 72 | | (C3xC6).38(C3xD4) | 432,405 |
(C3×C6).39(C3×D4) = C9×C24⋊C2 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).39(C3xD4) | 432,111 |
(C3×C6).40(C3×D4) = C9×D24 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).40(C3xD4) | 432,112 |
(C3×C6).41(C3×D4) = C9×Dic12 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).41(C3xD4) | 432,113 |
(C3×C6).42(C3×D4) = C9×C4⋊Dic3 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).42(C3xD4) | 432,133 |
(C3×C6).43(C3×D4) = C18×D12 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).43(C3xD4) | 432,346 |
(C3×C6).44(C3×D4) = C32×C24⋊C2 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).44(C3xD4) | 432,466 |
(C3×C6).45(C3×D4) = C32×D24 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).45(C3xD4) | 432,467 |
(C3×C6).46(C3×D4) = C32×Dic12 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).46(C3xD4) | 432,468 |
(C3×C6).47(C3×D4) = C32×C4⋊Dic3 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).47(C3xD4) | 432,473 |
(C3×C6).48(C3×D4) = C32×D6⋊C4 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).48(C3xD4) | 432,474 |
(C3×C6).49(C3×D4) = C3×C24⋊2S3 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).49(C3xD4) | 432,482 |
(C3×C6).50(C3×D4) = C3×C32⋊5D8 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).50(C3xD4) | 432,483 |
(C3×C6).51(C3×D4) = C3×C32⋊5Q16 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).51(C3xD4) | 432,484 |
(C3×C6).52(C3×D4) = C3×C12⋊Dic3 | φ: C3×D4/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).52(C3xD4) | 432,489 |
(C3×C6).53(C3×D4) = C9×Dic3⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).53(C3xD4) | 432,132 |
(C3×C6).54(C3×D4) = C9×D6⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).54(C3xD4) | 432,135 |
(C3×C6).55(C3×D4) = C9×D4⋊S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | 4 | (C3xC6).55(C3xD4) | 432,150 |
(C3×C6).56(C3×D4) = C9×D4.S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | 4 | (C3xC6).56(C3xD4) | 432,151 |
(C3×C6).57(C3×D4) = C9×Q8⋊2S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).57(C3xD4) | 432,158 |
(C3×C6).58(C3×D4) = C9×C3⋊Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).58(C3xD4) | 432,159 |
(C3×C6).59(C3×D4) = C9×C6.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).59(C3xD4) | 432,165 |
(C3×C6).60(C3×D4) = C18×C3⋊D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).60(C3xD4) | 432,375 |
(C3×C6).61(C3×D4) = C32×Dic3⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).61(C3xD4) | 432,472 |
(C3×C6).62(C3×D4) = C32×D4⋊S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).62(C3xD4) | 432,475 |
(C3×C6).63(C3×D4) = C32×D4.S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).63(C3xD4) | 432,476 |
(C3×C6).64(C3×D4) = C32×Q8⋊2S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).64(C3xD4) | 432,477 |
(C3×C6).65(C3×D4) = C32×C3⋊Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).65(C3xD4) | 432,478 |
(C3×C6).66(C3×D4) = C32×C6.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).66(C3xD4) | 432,479 |
(C3×C6).67(C3×D4) = C3×C6.Dic6 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).67(C3xD4) | 432,488 |
(C3×C6).68(C3×D4) = C3×C6.11D12 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).68(C3xD4) | 432,490 |
(C3×C6).69(C3×D4) = C3×C32⋊7D8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).69(C3xD4) | 432,491 |
(C3×C6).70(C3×D4) = C3×C32⋊9SD16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).70(C3xD4) | 432,492 |
(C3×C6).71(C3×D4) = C3×C32⋊11SD16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).71(C3xD4) | 432,493 |
(C3×C6).72(C3×D4) = C3×C32⋊7Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).72(C3xD4) | 432,494 |
(C3×C6).73(C3×D4) = C3×C62⋊5C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).73(C3xD4) | 432,495 |
(C3×C6).74(C3×D4) = C22⋊C4×C3×C9 | central extension (φ=1) | 216 | | (C3xC6).74(C3xD4) | 432,203 |
(C3×C6).75(C3×D4) = C4⋊C4×C3×C9 | central extension (φ=1) | 432 | | (C3xC6).75(C3xD4) | 432,206 |
(C3×C6).76(C3×D4) = D8×C3×C9 | central extension (φ=1) | 216 | | (C3xC6).76(C3xD4) | 432,215 |
(C3×C6).77(C3×D4) = SD16×C3×C9 | central extension (φ=1) | 216 | | (C3xC6).77(C3xD4) | 432,218 |
(C3×C6).78(C3×D4) = Q16×C3×C9 | central extension (φ=1) | 432 | | (C3xC6).78(C3xD4) | 432,221 |
(C3×C6).79(C3×D4) = D4×C3×C18 | central extension (φ=1) | 216 | | (C3xC6).79(C3xD4) | 432,403 |
(C3×C6).80(C3×D4) = C22⋊C4×C33 | central extension (φ=1) | 216 | | (C3xC6).80(C3xD4) | 432,513 |
(C3×C6).81(C3×D4) = C4⋊C4×C33 | central extension (φ=1) | 432 | | (C3xC6).81(C3xD4) | 432,514 |
(C3×C6).82(C3×D4) = D8×C33 | central extension (φ=1) | 216 | | (C3xC6).82(C3xD4) | 432,517 |
(C3×C6).83(C3×D4) = SD16×C33 | central extension (φ=1) | 216 | | (C3xC6).83(C3xD4) | 432,518 |
(C3×C6).84(C3×D4) = Q16×C33 | central extension (φ=1) | 432 | | (C3xC6).84(C3xD4) | 432,519 |