extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C24)⋊1C6 = He3⋊4D8 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6+ | (C3xC24):1C6 | 432,118 |
(C3×C24)⋊2C6 = He3⋊6SD16 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):2C6 | 432,117 |
(C3×C24)⋊3C6 = D8×He3 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):3C6 | 432,216 |
(C3×C24)⋊4C6 = C8×C32⋊C6 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):4C6 | 432,115 |
(C3×C24)⋊5C6 = He3⋊5M4(2) | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):5C6 | 432,116 |
(C3×C24)⋊6C6 = SD16×He3 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):6C6 | 432,219 |
(C3×C24)⋊7C6 = M4(2)×He3 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):7C6 | 432,213 |
(C3×C24)⋊8C6 = C2×C8×He3 | φ: C6/C2 → C3 ⊆ Aut C3×C24 | 144 | | (C3xC24):8C6 | 432,210 |
(C3×C24)⋊9C6 = C3×C32⋊5D8 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):9C6 | 432,483 |
(C3×C24)⋊10C6 = C32×D24 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):10C6 | 432,467 |
(C3×C24)⋊11C6 = C3×C24⋊2S3 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):11C6 | 432,482 |
(C3×C24)⋊12C6 = C32×C24⋊C2 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):12C6 | 432,466 |
(C3×C24)⋊13C6 = D8×C33 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24):13C6 | 432,517 |
(C3×C24)⋊14C6 = S3×C3×C24 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):14C6 | 432,464 |
(C3×C24)⋊15C6 = C3⋊S3×C24 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):15C6 | 432,480 |
(C3×C24)⋊16C6 = C3×C24⋊S3 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):16C6 | 432,481 |
(C3×C24)⋊17C6 = C32×C8⋊S3 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):17C6 | 432,465 |
(C3×C24)⋊18C6 = SD16×C33 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24):18C6 | 432,518 |
(C3×C24)⋊19C6 = M4(2)×C33 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24):19C6 | 432,516 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C24).1C6 = He3⋊4Q16 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 144 | 6- | (C3xC24).1C6 | 432,114 |
(C3×C24).2C6 = D8×3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24).2C6 | 432,217 |
(C3×C24).3C6 = Q16×He3 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 144 | 6 | (C3xC24).3C6 | 432,222 |
(C3×C24).4C6 = Q16×3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 144 | 6 | (C3xC24).4C6 | 432,223 |
(C3×C24).5C6 = He3⋊3C16 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 144 | 6 | (C3xC24).5C6 | 432,30 |
(C3×C24).6C6 = SD16×3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24).6C6 | 432,220 |
(C3×C24).7C6 = M4(2)×3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24).7C6 | 432,214 |
(C3×C24).8C6 = C16×He3 | φ: C6/C2 → C3 ⊆ Aut C3×C24 | 144 | 3 | (C3xC24).8C6 | 432,35 |
(C3×C24).9C6 = C16×3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C3×C24 | 144 | 3 | (C3xC24).9C6 | 432,36 |
(C3×C24).10C6 = C2×C8×3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C3×C24 | 144 | | (C3xC24).10C6 | 432,211 |
(C3×C24).11C6 = C3×C32⋊5Q16 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).11C6 | 432,484 |
(C3×C24).12C6 = C9×D24 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).12C6 | 432,112 |
(C3×C24).13C6 = C9×Dic12 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).13C6 | 432,113 |
(C3×C24).14C6 = C32×Dic12 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).14C6 | 432,468 |
(C3×C24).15C6 = C9×C24⋊C2 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).15C6 | 432,111 |
(C3×C24).16C6 = D8×C3×C9 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24).16C6 | 432,215 |
(C3×C24).17C6 = Q16×C3×C9 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 432 | | (C3xC24).17C6 | 432,221 |
(C3×C24).18C6 = Q16×C33 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 432 | | (C3xC24).18C6 | 432,519 |
(C3×C24).19C6 = C9×C3⋊C16 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).19C6 | 432,29 |
(C3×C24).20C6 = S3×C72 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).20C6 | 432,109 |
(C3×C24).21C6 = C32×C3⋊C16 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).21C6 | 432,229 |
(C3×C24).22C6 = C3×C24.S3 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).22C6 | 432,230 |
(C3×C24).23C6 = C9×C8⋊S3 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).23C6 | 432,110 |
(C3×C24).24C6 = SD16×C3×C9 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24).24C6 | 432,218 |
(C3×C24).25C6 = M4(2)×C3×C9 | φ: C6/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24).25C6 | 432,212 |