extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×Dic3) = D9×C3⋊C8 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | 4 | C6.1(S3xDic3) | 432,58 |
C6.2(S3×Dic3) = C36.39D6 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | 4 | C6.2(S3xDic3) | 432,60 |
C6.3(S3×Dic3) = Dic9⋊Dic3 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.3(S3xDic3) | 432,88 |
C6.4(S3×Dic3) = D18⋊Dic3 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.4(S3xDic3) | 432,91 |
C6.5(S3×Dic3) = C2×Dic3×D9 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.5(S3xDic3) | 432,304 |
C6.6(S3×Dic3) = C3⋊S3×C3⋊C8 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.6(S3xDic3) | 432,431 |
C6.7(S3×Dic3) = C33⋊8M4(2) | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.7(S3xDic3) | 432,434 |
C6.8(S3×Dic3) = Dic3×C3⋊Dic3 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.8(S3xDic3) | 432,448 |
C6.9(S3×Dic3) = C62.78D6 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.9(S3xDic3) | 432,450 |
C6.10(S3×Dic3) = C62.82D6 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.10(S3xDic3) | 432,454 |
C6.11(S3×Dic3) = C32⋊C6⋊C8 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | 6 | C6.11(S3xDic3) | 432,76 |
C6.12(S3×Dic3) = He3⋊M4(2) | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | 6 | C6.12(S3xDic3) | 432,77 |
C6.13(S3×Dic3) = He3⋊C42 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 144 | | C6.13(S3xDic3) | 432,94 |
C6.14(S3×Dic3) = C62.D6 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 144 | | C6.14(S3xDic3) | 432,95 |
C6.15(S3×Dic3) = C62.4D6 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | | C6.15(S3xDic3) | 432,97 |
C6.16(S3×Dic3) = C2×C6.S32 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | | C6.16(S3xDic3) | 432,317 |
C6.17(S3×Dic3) = C12.93S32 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.17(S3xDic3) | 432,455 |
C6.18(S3×Dic3) = C33⋊10M4(2) | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.18(S3xDic3) | 432,456 |
C6.19(S3×Dic3) = C33⋊6C42 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | | C6.19(S3xDic3) | 432,460 |
C6.20(S3×Dic3) = C62.84D6 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | | C6.20(S3xDic3) | 432,461 |
C6.21(S3×Dic3) = C62.85D6 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | | C6.21(S3xDic3) | 432,462 |
C6.22(S3×Dic3) = S3×C9⋊C8 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | 4 | C6.22(S3xDic3) | 432,66 |
C6.23(S3×Dic3) = D6.Dic9 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | 4 | C6.23(S3xDic3) | 432,67 |
C6.24(S3×Dic3) = Dic3×Dic9 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.24(S3xDic3) | 432,87 |
C6.25(S3×Dic3) = Dic3⋊Dic9 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.25(S3xDic3) | 432,90 |
C6.26(S3×Dic3) = D6⋊Dic9 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.26(S3xDic3) | 432,93 |
C6.27(S3×Dic3) = C2×S3×Dic9 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.27(S3xDic3) | 432,308 |
C6.28(S3×Dic3) = S3×C32⋊4C8 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.28(S3xDic3) | 432,430 |
C6.29(S3×Dic3) = C33⋊7M4(2) | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.29(S3xDic3) | 432,433 |
C6.30(S3×Dic3) = C62.77D6 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.30(S3xDic3) | 432,449 |
C6.31(S3×Dic3) = C62.80D6 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.31(S3xDic3) | 432,452 |
C6.32(S3×Dic3) = C3×S3×C3⋊C8 | central extension (φ=1) | 48 | 4 | C6.32(S3xDic3) | 432,414 |
C6.33(S3×Dic3) = C3×D6.Dic3 | central extension (φ=1) | 48 | 4 | C6.33(S3xDic3) | 432,416 |
C6.34(S3×Dic3) = C3×Dic32 | central extension (φ=1) | 48 | | C6.34(S3xDic3) | 432,425 |
C6.35(S3×Dic3) = C3×D6⋊Dic3 | central extension (φ=1) | 48 | | C6.35(S3xDic3) | 432,426 |
C6.36(S3×Dic3) = C3×Dic3⋊Dic3 | central extension (φ=1) | 48 | | C6.36(S3xDic3) | 432,428 |