Extensions 1→N→G→Q→1 with N=C6 and Q=S3×Dic3

Direct product G=N×Q with N=C6 and Q=S3×Dic3
dρLabelID
S3×C6×Dic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=C6 and Q=S3×Dic3
extensionφ:Q→Aut NdρLabelID
C61(S3×Dic3) = C2×Dic3×C3⋊S3φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6:1(S3xDic3)432,677
C62(S3×Dic3) = C2×C339(C2×C4)φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C648C6:2(S3xDic3)432,692
C63(S3×Dic3) = C2×S3×C3⋊Dic3φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6:3(S3xDic3)432,674

Non-split extensions G=N.Q with N=C6 and Q=S3×Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(S3×Dic3) = D9×C3⋊C8φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C61444C6.1(S3xDic3)432,58
C6.2(S3×Dic3) = C36.39D6φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C61444C6.2(S3xDic3)432,60
C6.3(S3×Dic3) = Dic9⋊Dic3φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6.3(S3xDic3)432,88
C6.4(S3×Dic3) = D18⋊Dic3φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6.4(S3xDic3)432,91
C6.5(S3×Dic3) = C2×Dic3×D9φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6.5(S3xDic3)432,304
C6.6(S3×Dic3) = C3⋊S3×C3⋊C8φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6.6(S3xDic3)432,431
C6.7(S3×Dic3) = C338M4(2)φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6.7(S3xDic3)432,434
C6.8(S3×Dic3) = Dic3×C3⋊Dic3φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6.8(S3xDic3)432,448
C6.9(S3×Dic3) = C62.78D6φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6.9(S3xDic3)432,450
C6.10(S3×Dic3) = C62.82D6φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C6144C6.10(S3xDic3)432,454
C6.11(S3×Dic3) = C32⋊C6⋊C8φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C6726C6.11(S3xDic3)432,76
C6.12(S3×Dic3) = He3⋊M4(2)φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C6726C6.12(S3xDic3)432,77
C6.13(S3×Dic3) = He3⋊C42φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C6144C6.13(S3xDic3)432,94
C6.14(S3×Dic3) = C62.D6φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C6144C6.14(S3xDic3)432,95
C6.15(S3×Dic3) = C62.4D6φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C672C6.15(S3xDic3)432,97
C6.16(S3×Dic3) = C2×C6.S32φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C672C6.16(S3xDic3)432,317
C6.17(S3×Dic3) = C12.93S32φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C6484C6.17(S3xDic3)432,455
C6.18(S3×Dic3) = C3310M4(2)φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C6484C6.18(S3xDic3)432,456
C6.19(S3×Dic3) = C336C42φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C648C6.19(S3xDic3)432,460
C6.20(S3×Dic3) = C62.84D6φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C648C6.20(S3xDic3)432,461
C6.21(S3×Dic3) = C62.85D6φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C648C6.21(S3xDic3)432,462
C6.22(S3×Dic3) = S3×C9⋊C8φ: S3×Dic3/S3×C6C2 ⊆ Aut C61444C6.22(S3xDic3)432,66
C6.23(S3×Dic3) = D6.Dic9φ: S3×Dic3/S3×C6C2 ⊆ Aut C61444C6.23(S3xDic3)432,67
C6.24(S3×Dic3) = Dic3×Dic9φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6.24(S3xDic3)432,87
C6.25(S3×Dic3) = Dic3⋊Dic9φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6.25(S3xDic3)432,90
C6.26(S3×Dic3) = D6⋊Dic9φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6.26(S3xDic3)432,93
C6.27(S3×Dic3) = C2×S3×Dic9φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6.27(S3xDic3)432,308
C6.28(S3×Dic3) = S3×C324C8φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6.28(S3xDic3)432,430
C6.29(S3×Dic3) = C337M4(2)φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6.29(S3xDic3)432,433
C6.30(S3×Dic3) = C62.77D6φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6.30(S3xDic3)432,449
C6.31(S3×Dic3) = C62.80D6φ: S3×Dic3/S3×C6C2 ⊆ Aut C6144C6.31(S3xDic3)432,452
C6.32(S3×Dic3) = C3×S3×C3⋊C8central extension (φ=1)484C6.32(S3xDic3)432,414
C6.33(S3×Dic3) = C3×D6.Dic3central extension (φ=1)484C6.33(S3xDic3)432,416
C6.34(S3×Dic3) = C3×Dic32central extension (φ=1)48C6.34(S3xDic3)432,425
C6.35(S3×Dic3) = C3×D6⋊Dic3central extension (φ=1)48C6.35(S3xDic3)432,426
C6.36(S3×Dic3) = C3×Dic3⋊Dic3central extension (φ=1)48C6.36(S3xDic3)432,428

׿
×
𝔽