# Extensions 1→N→G→Q→1 with N=C6 and Q=C6×Dic3

Direct product G=N×Q with N=C6 and Q=C6×Dic3
dρLabelID
Dic3×C62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C6 and Q=C6×Dic3
extensionφ:Q→Aut NdρLabelID
C61(C6×Dic3) = S3×C6×Dic3φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C648C6:1(C6xDic3)432,651
C62(C6×Dic3) = C2×C6×C3⋊Dic3φ: C6×Dic3/C62C2 ⊆ Aut C6144C6:2(C6xDic3)432,718

Non-split extensions G=N.Q with N=C6 and Q=C6×Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(C6×Dic3) = C3×S3×C3⋊C8φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C6484C6.1(C6xDic3)432,414
C6.2(C6×Dic3) = C3×D6.Dic3φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C6484C6.2(C6xDic3)432,416
C6.3(C6×Dic3) = C3×Dic32φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C648C6.3(C6xDic3)432,425
C6.4(C6×Dic3) = C3×D6⋊Dic3φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C648C6.4(C6xDic3)432,426
C6.5(C6×Dic3) = C3×Dic3⋊Dic3φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C648C6.5(C6xDic3)432,428
C6.6(C6×Dic3) = C6×C9⋊C8φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.6(C6xDic3)432,124
C6.7(C6×Dic3) = C3×C4.Dic9φ: C6×Dic3/C62C2 ⊆ Aut C6722C6.7(C6xDic3)432,125
C6.8(C6×Dic3) = C12×Dic9φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.8(C6xDic3)432,128
C6.9(C6×Dic3) = C3×C4⋊Dic9φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.9(C6xDic3)432,130
C6.10(C6×Dic3) = C2×He33C8φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.10(C6xDic3)432,136
C6.11(C6×Dic3) = He37M4(2)φ: C6×Dic3/C62C2 ⊆ Aut C6726C6.11(C6xDic3)432,137
C6.12(C6×Dic3) = C4×C32⋊C12φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.12(C6xDic3)432,138
C6.13(C6×Dic3) = C62.20D6φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.13(C6xDic3)432,140
C6.14(C6×Dic3) = C2×C9⋊C24φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.14(C6xDic3)432,142
C6.15(C6×Dic3) = C36.C12φ: C6×Dic3/C62C2 ⊆ Aut C6726C6.15(C6xDic3)432,143
C6.16(C6×Dic3) = C4×C9⋊C12φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.16(C6xDic3)432,144
C6.17(C6×Dic3) = C36⋊C12φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.17(C6xDic3)432,146
C6.18(C6×Dic3) = C3×C18.D4φ: C6×Dic3/C62C2 ⊆ Aut C672C6.18(C6xDic3)432,164
C6.19(C6×Dic3) = C623C12φ: C6×Dic3/C62C2 ⊆ Aut C672C6.19(C6xDic3)432,166
C6.20(C6×Dic3) = C62.27D6φ: C6×Dic3/C62C2 ⊆ Aut C672C6.20(C6xDic3)432,167
C6.21(C6×Dic3) = C2×C6×Dic9φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.21(C6xDic3)432,372
C6.22(C6×Dic3) = C22×C32⋊C12φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.22(C6xDic3)432,376
C6.23(C6×Dic3) = C22×C9⋊C12φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.23(C6xDic3)432,378
C6.24(C6×Dic3) = C6×C324C8φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.24(C6xDic3)432,485
C6.25(C6×Dic3) = C3×C12.58D6φ: C6×Dic3/C62C2 ⊆ Aut C672C6.25(C6xDic3)432,486
C6.26(C6×Dic3) = C12×C3⋊Dic3φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.26(C6xDic3)432,487
C6.27(C6×Dic3) = C3×C12⋊Dic3φ: C6×Dic3/C62C2 ⊆ Aut C6144C6.27(C6xDic3)432,489
C6.28(C6×Dic3) = C3×C625C4φ: C6×Dic3/C62C2 ⊆ Aut C672C6.28(C6xDic3)432,495
C6.29(C6×Dic3) = C18×C3⋊C8central extension (φ=1)144C6.29(C6xDic3)432,126
C6.30(C6×Dic3) = C9×C4.Dic3central extension (φ=1)722C6.30(C6xDic3)432,127
C6.31(C6×Dic3) = Dic3×C36central extension (φ=1)144C6.31(C6xDic3)432,131
C6.32(C6×Dic3) = C9×C4⋊Dic3central extension (φ=1)144C6.32(C6xDic3)432,133
C6.33(C6×Dic3) = C9×C6.D4central extension (φ=1)72C6.33(C6xDic3)432,165
C6.34(C6×Dic3) = Dic3×C2×C18central extension (φ=1)144C6.34(C6xDic3)432,373
C6.35(C6×Dic3) = C3×C6×C3⋊C8central extension (φ=1)144C6.35(C6xDic3)432,469
C6.36(C6×Dic3) = C32×C4.Dic3central extension (φ=1)72C6.36(C6xDic3)432,470
C6.37(C6×Dic3) = Dic3×C3×C12central extension (φ=1)144C6.37(C6xDic3)432,471
C6.38(C6×Dic3) = C32×C4⋊Dic3central extension (φ=1)144C6.38(C6xDic3)432,473
C6.39(C6×Dic3) = C32×C6.D4central extension (φ=1)72C6.39(C6xDic3)432,479

׿
×
𝔽