extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C6xDic3) = C3xS3xC3:C8 | φ: C6xDic3/C3xDic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(C6xDic3) | 432,414 |
C6.2(C6xDic3) = C3xD6.Dic3 | φ: C6xDic3/C3xDic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(C6xDic3) | 432,416 |
C6.3(C6xDic3) = C3xDic32 | φ: C6xDic3/C3xDic3 → C2 ⊆ Aut C6 | 48 | | C6.3(C6xDic3) | 432,425 |
C6.4(C6xDic3) = C3xD6:Dic3 | φ: C6xDic3/C3xDic3 → C2 ⊆ Aut C6 | 48 | | C6.4(C6xDic3) | 432,426 |
C6.5(C6xDic3) = C3xDic3:Dic3 | φ: C6xDic3/C3xDic3 → C2 ⊆ Aut C6 | 48 | | C6.5(C6xDic3) | 432,428 |
C6.6(C6xDic3) = C6xC9:C8 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.6(C6xDic3) | 432,124 |
C6.7(C6xDic3) = C3xC4.Dic9 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 72 | 2 | C6.7(C6xDic3) | 432,125 |
C6.8(C6xDic3) = C12xDic9 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.8(C6xDic3) | 432,128 |
C6.9(C6xDic3) = C3xC4:Dic9 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.9(C6xDic3) | 432,130 |
C6.10(C6xDic3) = C2xHe3:3C8 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.10(C6xDic3) | 432,136 |
C6.11(C6xDic3) = He3:7M4(2) | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 72 | 6 | C6.11(C6xDic3) | 432,137 |
C6.12(C6xDic3) = C4xC32:C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.12(C6xDic3) | 432,138 |
C6.13(C6xDic3) = C62.20D6 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.13(C6xDic3) | 432,140 |
C6.14(C6xDic3) = C2xC9:C24 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.14(C6xDic3) | 432,142 |
C6.15(C6xDic3) = C36.C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 72 | 6 | C6.15(C6xDic3) | 432,143 |
C6.16(C6xDic3) = C4xC9:C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.16(C6xDic3) | 432,144 |
C6.17(C6xDic3) = C36:C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.17(C6xDic3) | 432,146 |
C6.18(C6xDic3) = C3xC18.D4 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 72 | | C6.18(C6xDic3) | 432,164 |
C6.19(C6xDic3) = C62:3C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 72 | | C6.19(C6xDic3) | 432,166 |
C6.20(C6xDic3) = C62.27D6 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 72 | | C6.20(C6xDic3) | 432,167 |
C6.21(C6xDic3) = C2xC6xDic9 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.21(C6xDic3) | 432,372 |
C6.22(C6xDic3) = C22xC32:C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.22(C6xDic3) | 432,376 |
C6.23(C6xDic3) = C22xC9:C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.23(C6xDic3) | 432,378 |
C6.24(C6xDic3) = C6xC32:4C8 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.24(C6xDic3) | 432,485 |
C6.25(C6xDic3) = C3xC12.58D6 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 72 | | C6.25(C6xDic3) | 432,486 |
C6.26(C6xDic3) = C12xC3:Dic3 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.26(C6xDic3) | 432,487 |
C6.27(C6xDic3) = C3xC12:Dic3 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 144 | | C6.27(C6xDic3) | 432,489 |
C6.28(C6xDic3) = C3xC62:5C4 | φ: C6xDic3/C62 → C2 ⊆ Aut C6 | 72 | | C6.28(C6xDic3) | 432,495 |
C6.29(C6xDic3) = C18xC3:C8 | central extension (φ=1) | 144 | | C6.29(C6xDic3) | 432,126 |
C6.30(C6xDic3) = C9xC4.Dic3 | central extension (φ=1) | 72 | 2 | C6.30(C6xDic3) | 432,127 |
C6.31(C6xDic3) = Dic3xC36 | central extension (φ=1) | 144 | | C6.31(C6xDic3) | 432,131 |
C6.32(C6xDic3) = C9xC4:Dic3 | central extension (φ=1) | 144 | | C6.32(C6xDic3) | 432,133 |
C6.33(C6xDic3) = C9xC6.D4 | central extension (φ=1) | 72 | | C6.33(C6xDic3) | 432,165 |
C6.34(C6xDic3) = Dic3xC2xC18 | central extension (φ=1) | 144 | | C6.34(C6xDic3) | 432,373 |
C6.35(C6xDic3) = C3xC6xC3:C8 | central extension (φ=1) | 144 | | C6.35(C6xDic3) | 432,469 |
C6.36(C6xDic3) = C32xC4.Dic3 | central extension (φ=1) | 72 | | C6.36(C6xDic3) | 432,470 |
C6.37(C6xDic3) = Dic3xC3xC12 | central extension (φ=1) | 144 | | C6.37(C6xDic3) | 432,471 |
C6.38(C6xDic3) = C32xC4:Dic3 | central extension (φ=1) | 144 | | C6.38(C6xDic3) | 432,473 |
C6.39(C6xDic3) = C32xC6.D4 | central extension (φ=1) | 72 | | C6.39(C6xDic3) | 432,479 |