Extensions 1→N→G→Q→1 with N=C6 and Q=C6xDic3

Direct product G=NxQ with N=C6 and Q=C6xDic3
dρLabelID
Dic3xC62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C6 and Q=C6xDic3
extensionφ:Q→Aut NdρLabelID
C6:1(C6xDic3) = S3xC6xDic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C648C6:1(C6xDic3)432,651
C6:2(C6xDic3) = C2xC6xC3:Dic3φ: C6xDic3/C62C2 ⊆ Aut C6144C6:2(C6xDic3)432,718

Non-split extensions G=N.Q with N=C6 and Q=C6xDic3
extensionφ:Q→Aut NdρLabelID
C6.1(C6xDic3) = C3xS3xC3:C8φ: C6xDic3/C3xDic3C2 ⊆ Aut C6484C6.1(C6xDic3)432,414
C6.2(C6xDic3) = C3xD6.Dic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C6484C6.2(C6xDic3)432,416
C6.3(C6xDic3) = C3xDic32φ: C6xDic3/C3xDic3C2 ⊆ Aut C648C6.3(C6xDic3)432,425
C6.4(C6xDic3) = C3xD6:Dic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C648C6.4(C6xDic3)432,426
C6.5(C6xDic3) = C3xDic3:Dic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C648C6.5(C6xDic3)432,428
C6.6(C6xDic3) = C6xC9:C8φ: C6xDic3/C62C2 ⊆ Aut C6144C6.6(C6xDic3)432,124
C6.7(C6xDic3) = C3xC4.Dic9φ: C6xDic3/C62C2 ⊆ Aut C6722C6.7(C6xDic3)432,125
C6.8(C6xDic3) = C12xDic9φ: C6xDic3/C62C2 ⊆ Aut C6144C6.8(C6xDic3)432,128
C6.9(C6xDic3) = C3xC4:Dic9φ: C6xDic3/C62C2 ⊆ Aut C6144C6.9(C6xDic3)432,130
C6.10(C6xDic3) = C2xHe3:3C8φ: C6xDic3/C62C2 ⊆ Aut C6144C6.10(C6xDic3)432,136
C6.11(C6xDic3) = He3:7M4(2)φ: C6xDic3/C62C2 ⊆ Aut C6726C6.11(C6xDic3)432,137
C6.12(C6xDic3) = C4xC32:C12φ: C6xDic3/C62C2 ⊆ Aut C6144C6.12(C6xDic3)432,138
C6.13(C6xDic3) = C62.20D6φ: C6xDic3/C62C2 ⊆ Aut C6144C6.13(C6xDic3)432,140
C6.14(C6xDic3) = C2xC9:C24φ: C6xDic3/C62C2 ⊆ Aut C6144C6.14(C6xDic3)432,142
C6.15(C6xDic3) = C36.C12φ: C6xDic3/C62C2 ⊆ Aut C6726C6.15(C6xDic3)432,143
C6.16(C6xDic3) = C4xC9:C12φ: C6xDic3/C62C2 ⊆ Aut C6144C6.16(C6xDic3)432,144
C6.17(C6xDic3) = C36:C12φ: C6xDic3/C62C2 ⊆ Aut C6144C6.17(C6xDic3)432,146
C6.18(C6xDic3) = C3xC18.D4φ: C6xDic3/C62C2 ⊆ Aut C672C6.18(C6xDic3)432,164
C6.19(C6xDic3) = C62:3C12φ: C6xDic3/C62C2 ⊆ Aut C672C6.19(C6xDic3)432,166
C6.20(C6xDic3) = C62.27D6φ: C6xDic3/C62C2 ⊆ Aut C672C6.20(C6xDic3)432,167
C6.21(C6xDic3) = C2xC6xDic9φ: C6xDic3/C62C2 ⊆ Aut C6144C6.21(C6xDic3)432,372
C6.22(C6xDic3) = C22xC32:C12φ: C6xDic3/C62C2 ⊆ Aut C6144C6.22(C6xDic3)432,376
C6.23(C6xDic3) = C22xC9:C12φ: C6xDic3/C62C2 ⊆ Aut C6144C6.23(C6xDic3)432,378
C6.24(C6xDic3) = C6xC32:4C8φ: C6xDic3/C62C2 ⊆ Aut C6144C6.24(C6xDic3)432,485
C6.25(C6xDic3) = C3xC12.58D6φ: C6xDic3/C62C2 ⊆ Aut C672C6.25(C6xDic3)432,486
C6.26(C6xDic3) = C12xC3:Dic3φ: C6xDic3/C62C2 ⊆ Aut C6144C6.26(C6xDic3)432,487
C6.27(C6xDic3) = C3xC12:Dic3φ: C6xDic3/C62C2 ⊆ Aut C6144C6.27(C6xDic3)432,489
C6.28(C6xDic3) = C3xC62:5C4φ: C6xDic3/C62C2 ⊆ Aut C672C6.28(C6xDic3)432,495
C6.29(C6xDic3) = C18xC3:C8central extension (φ=1)144C6.29(C6xDic3)432,126
C6.30(C6xDic3) = C9xC4.Dic3central extension (φ=1)722C6.30(C6xDic3)432,127
C6.31(C6xDic3) = Dic3xC36central extension (φ=1)144C6.31(C6xDic3)432,131
C6.32(C6xDic3) = C9xC4:Dic3central extension (φ=1)144C6.32(C6xDic3)432,133
C6.33(C6xDic3) = C9xC6.D4central extension (φ=1)72C6.33(C6xDic3)432,165
C6.34(C6xDic3) = Dic3xC2xC18central extension (φ=1)144C6.34(C6xDic3)432,373
C6.35(C6xDic3) = C3xC6xC3:C8central extension (φ=1)144C6.35(C6xDic3)432,469
C6.36(C6xDic3) = C32xC4.Dic3central extension (φ=1)72C6.36(C6xDic3)432,470
C6.37(C6xDic3) = Dic3xC3xC12central extension (φ=1)144C6.37(C6xDic3)432,471
C6.38(C6xDic3) = C32xC4:Dic3central extension (φ=1)144C6.38(C6xDic3)432,473
C6.39(C6xDic3) = C32xC6.D4central extension (φ=1)72C6.39(C6xDic3)432,479

׿
x
:
Z
F
o
wr
Q
<