extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3×C3⋊D4) = C3×C3⋊D24 | φ: C3×C3⋊D4/C3×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(C3xC3:D4) | 432,419 |
C6.2(C3×C3⋊D4) = C3×D12.S3 | φ: C3×C3⋊D4/C3×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(C3xC3:D4) | 432,421 |
C6.3(C3×C3⋊D4) = C3×C32⋊5SD16 | φ: C3×C3⋊D4/C3×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.3(C3xC3:D4) | 432,422 |
C6.4(C3×C3⋊D4) = C3×C32⋊3Q16 | φ: C3×C3⋊D4/C3×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(C3xC3:D4) | 432,424 |
C6.5(C3×C3⋊D4) = C3×C6.D12 | φ: C3×C3⋊D4/C3×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.5(C3xC3:D4) | 432,427 |
C6.6(C3×C3⋊D4) = C3×Dic3⋊Dic3 | φ: C3×C3⋊D4/C3×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.6(C3xC3:D4) | 432,428 |
C6.7(C3×C3⋊D4) = C3×C32⋊2D8 | φ: C3×C3⋊D4/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(C3xC3:D4) | 432,418 |
C6.8(C3×C3⋊D4) = C3×Dic6⋊S3 | φ: C3×C3⋊D4/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(C3xC3:D4) | 432,420 |
C6.9(C3×C3⋊D4) = C3×C32⋊2Q16 | φ: C3×C3⋊D4/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.9(C3xC3:D4) | 432,423 |
C6.10(C3×C3⋊D4) = C3×D6⋊Dic3 | φ: C3×C3⋊D4/S3×C6 → C2 ⊆ Aut C6 | 48 | | C6.10(C3xC3:D4) | 432,426 |
C6.11(C3×C3⋊D4) = C3×C62.C22 | φ: C3×C3⋊D4/S3×C6 → C2 ⊆ Aut C6 | 48 | | C6.11(C3xC3:D4) | 432,429 |
C6.12(C3×C3⋊D4) = C3×Dic9⋊C4 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | | C6.12(C3xC3:D4) | 432,129 |
C6.13(C3×C3⋊D4) = C3×D18⋊C4 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | | C6.13(C3xC3:D4) | 432,134 |
C6.14(C3×C3⋊D4) = C62.19D6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | | C6.14(C3xC3:D4) | 432,139 |
C6.15(C3×C3⋊D4) = C62.21D6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.15(C3xC3:D4) | 432,141 |
C6.16(C3×C3⋊D4) = Dic9⋊C12 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | | C6.16(C3xC3:D4) | 432,145 |
C6.17(C3×C3⋊D4) = D18⋊C12 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.17(C3xC3:D4) | 432,147 |
C6.18(C3×C3⋊D4) = C3×D4.D9 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | 4 | C6.18(C3xC3:D4) | 432,148 |
C6.19(C3×C3⋊D4) = C3×D4⋊D9 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | 4 | C6.19(C3xC3:D4) | 432,149 |
C6.20(C3×C3⋊D4) = He3⋊8SD16 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.20(C3xC3:D4) | 432,152 |
C6.21(C3×C3⋊D4) = He3⋊6D8 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | 12+ | C6.21(C3xC3:D4) | 432,153 |
C6.22(C3×C3⋊D4) = Dic18⋊C6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.22(C3xC3:D4) | 432,154 |
C6.23(C3×C3⋊D4) = D36⋊C6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | 12+ | C6.23(C3xC3:D4) | 432,155 |
C6.24(C3×C3⋊D4) = C3×C9⋊Q16 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | 4 | C6.24(C3xC3:D4) | 432,156 |
C6.25(C3×C3⋊D4) = C3×Q8⋊2D9 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | 4 | C6.25(C3xC3:D4) | 432,157 |
C6.26(C3×C3⋊D4) = He3⋊6Q16 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | 12- | C6.26(C3xC3:D4) | 432,160 |
C6.27(C3×C3⋊D4) = He3⋊10SD16 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | 12+ | C6.27(C3xC3:D4) | 432,161 |
C6.28(C3×C3⋊D4) = Dic18.C6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | 12- | C6.28(C3xC3:D4) | 432,162 |
C6.29(C3×C3⋊D4) = D36.C6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | 12+ | C6.29(C3xC3:D4) | 432,163 |
C6.30(C3×C3⋊D4) = C3×C18.D4 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.30(C3xC3:D4) | 432,164 |
C6.31(C3×C3⋊D4) = C62⋊3C12 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.31(C3xC3:D4) | 432,166 |
C6.32(C3×C3⋊D4) = C62.27D6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.32(C3xC3:D4) | 432,167 |
C6.33(C3×C3⋊D4) = C6×C9⋊D4 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.33(C3xC3:D4) | 432,374 |
C6.34(C3×C3⋊D4) = C2×He3⋊6D4 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.34(C3xC3:D4) | 432,377 |
C6.35(C3×C3⋊D4) = C2×Dic9⋊C6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.35(C3xC3:D4) | 432,379 |
C6.36(C3×C3⋊D4) = C3×C6.Dic6 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | | C6.36(C3xC3:D4) | 432,488 |
C6.37(C3×C3⋊D4) = C3×C6.11D12 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | | C6.37(C3xC3:D4) | 432,490 |
C6.38(C3×C3⋊D4) = C3×C32⋊7D8 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.38(C3xC3:D4) | 432,491 |
C6.39(C3×C3⋊D4) = C3×C32⋊9SD16 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.39(C3xC3:D4) | 432,492 |
C6.40(C3×C3⋊D4) = C3×C32⋊11SD16 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | | C6.40(C3xC3:D4) | 432,493 |
C6.41(C3×C3⋊D4) = C3×C32⋊7Q16 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 144 | | C6.41(C3xC3:D4) | 432,494 |
C6.42(C3×C3⋊D4) = C3×C62⋊5C4 | φ: C3×C3⋊D4/C62 → C2 ⊆ Aut C6 | 72 | | C6.42(C3xC3:D4) | 432,495 |
C6.43(C3×C3⋊D4) = C9×Dic3⋊C4 | central extension (φ=1) | 144 | | C6.43(C3xC3:D4) | 432,132 |
C6.44(C3×C3⋊D4) = C9×D6⋊C4 | central extension (φ=1) | 144 | | C6.44(C3xC3:D4) | 432,135 |
C6.45(C3×C3⋊D4) = C9×D4⋊S3 | central extension (φ=1) | 72 | 4 | C6.45(C3xC3:D4) | 432,150 |
C6.46(C3×C3⋊D4) = C9×D4.S3 | central extension (φ=1) | 72 | 4 | C6.46(C3xC3:D4) | 432,151 |
C6.47(C3×C3⋊D4) = C9×Q8⋊2S3 | central extension (φ=1) | 144 | 4 | C6.47(C3xC3:D4) | 432,158 |
C6.48(C3×C3⋊D4) = C9×C3⋊Q16 | central extension (φ=1) | 144 | 4 | C6.48(C3xC3:D4) | 432,159 |
C6.49(C3×C3⋊D4) = C9×C6.D4 | central extension (φ=1) | 72 | | C6.49(C3xC3:D4) | 432,165 |
C6.50(C3×C3⋊D4) = C18×C3⋊D4 | central extension (φ=1) | 72 | | C6.50(C3xC3:D4) | 432,375 |
C6.51(C3×C3⋊D4) = C32×Dic3⋊C4 | central extension (φ=1) | 144 | | C6.51(C3xC3:D4) | 432,472 |
C6.52(C3×C3⋊D4) = C32×D6⋊C4 | central extension (φ=1) | 144 | | C6.52(C3xC3:D4) | 432,474 |
C6.53(C3×C3⋊D4) = C32×D4⋊S3 | central extension (φ=1) | 72 | | C6.53(C3xC3:D4) | 432,475 |
C6.54(C3×C3⋊D4) = C32×D4.S3 | central extension (φ=1) | 72 | | C6.54(C3xC3:D4) | 432,476 |
C6.55(C3×C3⋊D4) = C32×Q8⋊2S3 | central extension (φ=1) | 144 | | C6.55(C3xC3:D4) | 432,477 |
C6.56(C3×C3⋊D4) = C32×C3⋊Q16 | central extension (φ=1) | 144 | | C6.56(C3xC3:D4) | 432,478 |
C6.57(C3×C3⋊D4) = C32×C6.D4 | central extension (φ=1) | 72 | | C6.57(C3xC3:D4) | 432,479 |