Extensions 1→N→G→Q→1 with N=C6 and Q=C4×D9

Direct product G=N×Q with N=C6 and Q=C4×D9
dρLabelID
D9×C2×C12144D9xC2xC12432,342

Semidirect products G=N:Q with N=C6 and Q=C4×D9
extensionφ:Q→Aut NdρLabelID
C61(C4×D9) = C2×C18.D6φ: C4×D9/Dic9C2 ⊆ Aut C672C6:1(C4xD9)432,306
C62(C4×D9) = C2×C4×C9⋊S3φ: C4×D9/C36C2 ⊆ Aut C6216C6:2(C4xD9)432,381
C63(C4×D9) = C2×Dic3×D9φ: C4×D9/D18C2 ⊆ Aut C6144C6:3(C4xD9)432,304

Non-split extensions G=N.Q with N=C6 and Q=C4×D9
extensionφ:Q→Aut NdρLabelID
C6.1(C4×D9) = C36.38D6φ: C4×D9/Dic9C2 ⊆ Aut C6724C6.1(C4xD9)432,59
C6.2(C4×D9) = C36.40D6φ: C4×D9/Dic9C2 ⊆ Aut C6724C6.2(C4xD9)432,61
C6.3(C4×D9) = C18.Dic6φ: C4×D9/Dic9C2 ⊆ Aut C6144C6.3(C4xD9)432,89
C6.4(C4×D9) = C6.18D36φ: C4×D9/Dic9C2 ⊆ Aut C672C6.4(C4xD9)432,92
C6.5(C4×D9) = C8×D27φ: C4×D9/C36C2 ⊆ Aut C62162C6.5(C4xD9)432,5
C6.6(C4×D9) = C8⋊D27φ: C4×D9/C36C2 ⊆ Aut C62162C6.6(C4xD9)432,6
C6.7(C4×D9) = C4×Dic27φ: C4×D9/C36C2 ⊆ Aut C6432C6.7(C4xD9)432,11
C6.8(C4×D9) = Dic27⋊C4φ: C4×D9/C36C2 ⊆ Aut C6432C6.8(C4xD9)432,12
C6.9(C4×D9) = D54⋊C4φ: C4×D9/C36C2 ⊆ Aut C6216C6.9(C4xD9)432,14
C6.10(C4×D9) = C2×C4×D27φ: C4×D9/C36C2 ⊆ Aut C6216C6.10(C4xD9)432,44
C6.11(C4×D9) = C8×C9⋊S3φ: C4×D9/C36C2 ⊆ Aut C6216C6.11(C4xD9)432,169
C6.12(C4×D9) = C72⋊S3φ: C4×D9/C36C2 ⊆ Aut C6216C6.12(C4xD9)432,170
C6.13(C4×D9) = C4×C9⋊Dic3φ: C4×D9/C36C2 ⊆ Aut C6432C6.13(C4xD9)432,180
C6.14(C4×D9) = C6.Dic18φ: C4×D9/C36C2 ⊆ Aut C6432C6.14(C4xD9)432,181
C6.15(C4×D9) = C6.11D36φ: C4×D9/C36C2 ⊆ Aut C6216C6.15(C4xD9)432,183
C6.16(C4×D9) = D9×C3⋊C8φ: C4×D9/D18C2 ⊆ Aut C61444C6.16(C4xD9)432,58
C6.17(C4×D9) = C36.39D6φ: C4×D9/D18C2 ⊆ Aut C61444C6.17(C4xD9)432,60
C6.18(C4×D9) = Dic3×Dic9φ: C4×D9/D18C2 ⊆ Aut C6144C6.18(C4xD9)432,87
C6.19(C4×D9) = Dic9⋊Dic3φ: C4×D9/D18C2 ⊆ Aut C6144C6.19(C4xD9)432,88
C6.20(C4×D9) = D18⋊Dic3φ: C4×D9/D18C2 ⊆ Aut C6144C6.20(C4xD9)432,91
C6.21(C4×D9) = D9×C24central extension (φ=1)1442C6.21(C4xD9)432,105
C6.22(C4×D9) = C3×C8⋊D9central extension (φ=1)1442C6.22(C4xD9)432,106
C6.23(C4×D9) = C12×Dic9central extension (φ=1)144C6.23(C4xD9)432,128
C6.24(C4×D9) = C3×Dic9⋊C4central extension (φ=1)144C6.24(C4xD9)432,129
C6.25(C4×D9) = C3×D18⋊C4central extension (φ=1)144C6.25(C4xD9)432,134

׿
×
𝔽