extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1Dic6 = C62.D6 | φ: Dic6/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).1Dic6 | 432,95 |
(C3×C6).2Dic6 = C62.3D6 | φ: Dic6/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).2Dic6 | 432,96 |
(C3×C6).3Dic6 = C6.PSU3(𝔽2) | φ: Dic6/C3 → Q8 ⊆ Aut C3×C6 | 48 | 8 | (C3xC6).3Dic6 | 432,592 |
(C3×C6).4Dic6 = C6.2PSU3(𝔽2) | φ: Dic6/C3 → Q8 ⊆ Aut C3×C6 | 48 | 8 | (C3xC6).4Dic6 | 432,593 |
(C3×C6).5Dic6 = C62.19D6 | φ: Dic6/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).5Dic6 | 432,139 |
(C3×C6).6Dic6 = C62.20D6 | φ: Dic6/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).6Dic6 | 432,140 |
(C3×C6).7Dic6 = Dic9⋊C12 | φ: Dic6/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).7Dic6 | 432,145 |
(C3×C6).8Dic6 = C36⋊C12 | φ: Dic6/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).8Dic6 | 432,146 |
(C3×C6).9Dic6 = C62.29D6 | φ: Dic6/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).9Dic6 | 432,187 |
(C3×C6).10Dic6 = C62.30D6 | φ: Dic6/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).10Dic6 | 432,188 |
(C3×C6).11Dic6 = C2×C36.C6 | φ: Dic6/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).11Dic6 | 432,352 |
(C3×C6).12Dic6 = Dic9⋊Dic3 | φ: Dic6/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).12Dic6 | 432,88 |
(C3×C6).13Dic6 = C18.Dic6 | φ: Dic6/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).13Dic6 | 432,89 |
(C3×C6).14Dic6 = Dic3⋊Dic9 | φ: Dic6/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).14Dic6 | 432,90 |
(C3×C6).15Dic6 = C2×C9⋊Dic6 | φ: Dic6/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).15Dic6 | 432,303 |
(C3×C6).16Dic6 = C62.80D6 | φ: Dic6/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).16Dic6 | 432,452 |
(C3×C6).17Dic6 = C62.82D6 | φ: Dic6/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).17Dic6 | 432,454 |
(C3×C6).18Dic6 = C62.85D6 | φ: Dic6/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).18Dic6 | 432,462 |
(C3×C6).19Dic6 = C3×Dic3⋊Dic3 | φ: Dic6/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).19Dic6 | 432,428 |
(C3×C6).20Dic6 = C3×C62.C22 | φ: Dic6/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).20Dic6 | 432,429 |
(C3×C6).21Dic6 = C62.81D6 | φ: Dic6/Dic3 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).21Dic6 | 432,453 |
(C3×C6).22Dic6 = C3×Dic9⋊C4 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).22Dic6 | 432,129 |
(C3×C6).23Dic6 = C3×C4⋊Dic9 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).23Dic6 | 432,130 |
(C3×C6).24Dic6 = C6.Dic18 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).24Dic6 | 432,181 |
(C3×C6).25Dic6 = C36⋊Dic3 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).25Dic6 | 432,182 |
(C3×C6).26Dic6 = C6×Dic18 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).26Dic6 | 432,340 |
(C3×C6).27Dic6 = C2×C12.D9 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).27Dic6 | 432,380 |
(C3×C6).28Dic6 = C3×C6.Dic6 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).28Dic6 | 432,488 |
(C3×C6).29Dic6 = C3×C12⋊Dic3 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).29Dic6 | 432,489 |
(C3×C6).30Dic6 = C62.146D6 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).30Dic6 | 432,504 |
(C3×C6).31Dic6 = C62.147D6 | φ: Dic6/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).31Dic6 | 432,505 |
(C3×C6).32Dic6 = C32×Dic3⋊C4 | central extension (φ=1) | 144 | | (C3xC6).32Dic6 | 432,472 |
(C3×C6).33Dic6 = C32×C4⋊Dic3 | central extension (φ=1) | 144 | | (C3xC6).33Dic6 | 432,473 |