extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C14)⋊1SD16 = D28.31D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14):1SD16 | 448,265 |
(C2×C14)⋊2SD16 = Dic14⋊14D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14):2SD16 | 448,272 |
(C2×C14)⋊3SD16 = Dic14⋊17D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14):3SD16 | 448,574 |
(C2×C14)⋊4SD16 = C7⋊C8⋊23D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14):4SD16 | 448,575 |
(C2×C14)⋊5SD16 = D28.36D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14):5SD16 | 448,580 |
(C2×C14)⋊6SD16 = C7⋊C8⋊24D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14):6SD16 | 448,582 |
(C2×C14)⋊7SD16 = C7×C8⋊8D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14):7SD16 | 448,873 |
(C2×C14)⋊8SD16 = C56⋊30D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14):8SD16 | 448,648 |
(C2×C14)⋊9SD16 = C22×C56⋊C2 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14):9SD16 | 448,1192 |
(C2×C14)⋊10SD16 = C7×C22⋊SD16 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14):10SD16 | 448,858 |
(C2×C14)⋊11SD16 = (C7×D4).31D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14):11SD16 | 448,752 |
(C2×C14)⋊12SD16 = C22×D4.D7 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14):12SD16 | 448,1247 |
(C2×C14)⋊13SD16 = C7×Q8⋊D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14):13SD16 | 448,856 |
(C2×C14)⋊14SD16 = (C7×Q8)⋊13D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14):14SD16 | 448,761 |
(C2×C14)⋊15SD16 = C22×Q8⋊D7 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14):15SD16 | 448,1260 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C14).1SD16 = C23.30D28 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14).1SD16 | 448,24 |
(C2×C14).2SD16 = C22.2D56 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14).2SD16 | 448,27 |
(C2×C14).3SD16 = C8.Dic14 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).3SD16 | 448,51 |
(C2×C14).4SD16 = D56.C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | 4+ | (C2xC14).4SD16 | 448,52 |
(C2×C14).5SD16 = C56.8D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | 4- | (C2xC14).5SD16 | 448,53 |
(C2×C14).6SD16 = Dic28.C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | 4 | (C2xC14).6SD16 | 448,54 |
(C2×C14).7SD16 = C16⋊Dic7 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).7SD16 | 448,70 |
(C2×C14).8SD16 = C28.3D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | 4+ | (C2xC14).8SD16 | 448,73 |
(C2×C14).9SD16 = C28.4D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | 4- | (C2xC14).9SD16 | 448,74 |
(C2×C14).10SD16 = (D4×C14)⋊C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14).10SD16 | 448,94 |
(C2×C14).11SD16 = C4⋊C4⋊Dic7 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14).11SD16 | 448,95 |
(C2×C14).12SD16 = C28.58D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | 4 | (C2xC14).12SD16 | 448,124 |
(C2×C14).13SD16 = C23.34D28 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14).13SD16 | 448,255 |
(C2×C14).14SD16 = C23.38D28 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14).14SD16 | 448,269 |
(C2×C14).15SD16 = C4⋊D4.D7 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14).15SD16 | 448,568 |
(C2×C14).16SD16 = C22⋊Q8.D7 | φ: SD16/C4 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14).16SD16 | 448,577 |
(C2×C14).17SD16 = C7×D8.C4 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 224 | 2 | (C2xC14).17SD16 | 448,163 |
(C2×C14).18SD16 = D56.1C4 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 224 | 2 | (C2xC14).18SD16 | 448,67 |
(C2×C14).19SD16 = C28.9C42 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).19SD16 | 448,108 |
(C2×C14).20SD16 = C2×C28.44D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).20SD16 | 448,637 |
(C2×C14).21SD16 = C2×C8⋊Dic7 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).21SD16 | 448,638 |
(C2×C14).22SD16 = C2×C2.D56 | φ: SD16/C8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).22SD16 | 448,646 |
(C2×C14).23SD16 = C7×C23.31D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).23SD16 | 448,132 |
(C2×C14).24SD16 = C7×M5(2)⋊C2 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).24SD16 | 448,165 |
(C2×C14).25SD16 = C7×C8.17D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 224 | 4 | (C2xC14).25SD16 | 448,166 |
(C2×C14).26SD16 = C7×C8.Q8 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).26SD16 | 448,169 |
(C2×C14).27SD16 = C7×C23.47D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).27SD16 | 448,891 |
(C2×C14).28SD16 = C4⋊Dic7⋊C4 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).28SD16 | 448,9 |
(C2×C14).29SD16 = C56.Q8 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).29SD16 | 448,44 |
(C2×C14).30SD16 = D8.Dic7 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).30SD16 | 448,120 |
(C2×C14).31SD16 = Q16.Dic7 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 224 | 4 | (C2xC14).31SD16 | 448,122 |
(C2×C14).32SD16 = C2×C14.Q16 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).32SD16 | 448,503 |
(C2×C14).33SD16 = C4⋊C4.231D14 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).33SD16 | 448,505 |
(C2×C14).34SD16 = C2×D4⋊Dic7 | φ: SD16/D4 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).34SD16 | 448,748 |
(C2×C14).35SD16 = C7×C22.SD16 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).35SD16 | 448,131 |
(C2×C14).36SD16 = C7×C23.46D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).36SD16 | 448,889 |
(C2×C14).37SD16 = C14.C4≀C2 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).37SD16 | 448,8 |
(C2×C14).38SD16 = C28.C42 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).38SD16 | 448,86 |
(C2×C14).39SD16 = C2×C4.Dic14 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).39SD16 | 448,497 |
(C2×C14).40SD16 = C2×C14.D8 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).40SD16 | 448,499 |
(C2×C14).41SD16 = C4⋊C4.228D14 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).41SD16 | 448,502 |
(C2×C14).42SD16 = C2×Q8⋊Dic7 | φ: SD16/Q8 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).42SD16 | 448,758 |
(C2×C14).43SD16 = C7×C22.4Q16 | central extension (φ=1) | 448 | | (C2xC14).43SD16 | 448,144 |
(C2×C14).44SD16 = C14×D4⋊C4 | central extension (φ=1) | 224 | | (C2xC14).44SD16 | 448,822 |
(C2×C14).45SD16 = C14×Q8⋊C4 | central extension (φ=1) | 448 | | (C2xC14).45SD16 | 448,823 |
(C2×C14).46SD16 = C14×C4.Q8 | central extension (φ=1) | 448 | | (C2xC14).46SD16 | 448,833 |