Extensions 1→N→G→Q→1 with N=C4xD7 and Q=D4

Direct product G=NxQ with N=C4xD7 and Q=D4
dρLabelID
C4xD4xD7112C4xD4xD7448,997

Semidirect products G=N:Q with N=C4xD7 and Q=D4
extensionφ:Q→Out NdρLabelID
(C4xD7):1D4 = C14.382+ 1+4φ: D4/C2C22 ⊆ Out C4xD7112(C4xD7):1D4448,1060
(C4xD7):2D4 = C14.722- 1+4φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7):2D4448,1061
(C4xD7):3D4 = C14.172- 1+4φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7):3D4448,1082
(C4xD7):4D4 = C42:18D14φ: D4/C2C22 ⊆ Out C4xD7112(C4xD7):4D4448,1127
(C4xD7):5D4 = C42:26D14φ: D4/C2C22 ⊆ Out C4xD7112(C4xD7):5D4448,1168
(C4xD7):6D4 = C42.233D14φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7):6D4448,1121
(C4xD7):7D4 = D7xC4:1D4φ: D4/C4C2 ⊆ Out C4xD7112(C4xD7):7D4448,1167
(C4xD7):8D4 = C42.238D14φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7):8D4448,1169
(C4xD7):9D4 = C42.240D14φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7):9D4448,1178
(C4xD7):10D4 = C42.228D14φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7):10D4448,1001
(C4xD7):11D4 = D7xC4:D4φ: D4/C22C2 ⊆ Out C4xD7112(C4xD7):11D4448,1057
(C4xD7):12D4 = C4:C4:21D14φ: D4/C22C2 ⊆ Out C4xD7112(C4xD7):12D4448,1059
(C4xD7):13D4 = C4:C4:26D14φ: D4/C22C2 ⊆ Out C4xD7112(C4xD7):13D4448,1080
(C4xD7):14D4 = C42:12D14φ: D4/C22C2 ⊆ Out C4xD7112(C4xD7):14D4448,1000

Non-split extensions G=N.Q with N=C4xD7 and Q=D4
extensionφ:Q→Out NdρLabelID
(C4xD7).1D4 = D7xC4.D4φ: D4/C2C22 ⊆ Out C4xD7568+(C4xD7).1D4448,278
(C4xD7).2D4 = D7xC4.10D4φ: D4/C2C22 ⊆ Out C4xD71128-(C4xD7).2D4448,284
(C4xD7).3D4 = (D4xD7):C4φ: D4/C2C22 ⊆ Out C4xD7112(C4xD7).3D4448,304
(C4xD7).4D4 = D4:(C4xD7)φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7).4D4448,305
(C4xD7).5D4 = (Q8xD7):C4φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7).5D4448,336
(C4xD7).6D4 = Q8:(C4xD7)φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7).6D4448,337
(C4xD7).7D4 = D8:D14φ: D4/C2C22 ⊆ Out C4xD71124(C4xD7).7D4448,445
(C4xD7).8D4 = D112:C2φ: D4/C2C22 ⊆ Out C4xD71124+(C4xD7).8D4448,448
(C4xD7).9D4 = SD32:D7φ: D4/C2C22 ⊆ Out C4xD72244-(C4xD7).9D4448,449
(C4xD7).10D4 = Q32:D7φ: D4/C2C22 ⊆ Out C4xD72244(C4xD7).10D4448,452
(C4xD7).11D4 = C14.162- 1+4φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7).11D4448,1081
(C4xD7).12D4 = C42.141D14φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7).12D4448,1128
(C4xD7).13D4 = C42.171D14φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7).13D4448,1177
(C4xD7).14D4 = C2xD8:D7φ: D4/C2C22 ⊆ Out C4xD7112(C4xD7).14D4448,1208
(C4xD7).15D4 = C2xD56:C2φ: D4/C2C22 ⊆ Out C4xD7112(C4xD7).15D4448,1212
(C4xD7).16D4 = C2xSD16:D7φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7).16D4448,1213
(C4xD7).17D4 = C2xQ16:D7φ: D4/C2C22 ⊆ Out C4xD7224(C4xD7).17D4448,1217
(C4xD7).18D4 = D7xD16φ: D4/C4C2 ⊆ Out C4xD71124+(C4xD7).18D4448,444
(C4xD7).19D4 = D16:3D7φ: D4/C4C2 ⊆ Out C4xD72244-(C4xD7).19D4448,446
(C4xD7).20D4 = D7xSD32φ: D4/C4C2 ⊆ Out C4xD71124(C4xD7).20D4448,447
(C4xD7).21D4 = SD32:3D7φ: D4/C4C2 ⊆ Out C4xD72244(C4xD7).21D4448,450
(C4xD7).22D4 = D7xQ32φ: D4/C4C2 ⊆ Out C4xD72244-(C4xD7).22D4448,451
(C4xD7).23D4 = Q32:3D7φ: D4/C4C2 ⊆ Out C4xD72244+(C4xD7).23D4448,453
(C4xD7).24D4 = D7xC4.4D4φ: D4/C4C2 ⊆ Out C4xD7112(C4xD7).24D4448,1126
(C4xD7).25D4 = D7xC4:Q8φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7).25D4448,1176
(C4xD7).26D4 = C2xD7xD8φ: D4/C4C2 ⊆ Out C4xD7112(C4xD7).26D4448,1207
(C4xD7).27D4 = C2xD8:3D7φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7).27D4448,1209
(C4xD7).28D4 = C2xD7xSD16φ: D4/C4C2 ⊆ Out C4xD7112(C4xD7).28D4448,1211
(C4xD7).29D4 = C2xSD16:3D7φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7).29D4448,1214
(C4xD7).30D4 = C2xD7xQ16φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7).30D4448,1216
(C4xD7).31D4 = C2xQ8.D14φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7).31D4448,1218
(C4xD7).32D4 = D7xC4wrC2φ: D4/C4C2 ⊆ Out C4xD7564(C4xD7).32D4448,354
(C4xD7).33D4 = C28:M4(2)φ: D4/C4C2 ⊆ Out C4xD7224(C4xD7).33D4448,371
(C4xD7).34D4 = D7xC8.C4φ: D4/C4C2 ⊆ Out C4xD71124(C4xD7).34D4448,426
(C4xD7).35D4 = M4(2).19D14φ: D4/C22C2 ⊆ Out C4xD71128-(C4xD7).35D4448,279
(C4xD7).36D4 = M4(2).21D14φ: D4/C22C2 ⊆ Out C4xD71128+(C4xD7).36D4448,285
(C4xD7).37D4 = D7xD4:C4φ: D4/C22C2 ⊆ Out C4xD7112(C4xD7).37D4448,303
(C4xD7).38D4 = D4:2D7:C4φ: D4/C22C2 ⊆ Out C4xD7224(C4xD7).38D4448,306
(C4xD7).39D4 = D7xQ8:C4φ: D4/C22C2 ⊆ Out C4xD7224(C4xD7).39D4448,335
(C4xD7).40D4 = Q8:2D7:C4φ: D4/C22C2 ⊆ Out C4xD7224(C4xD7).40D4448,338
(C4xD7).41D4 = D7xC22:Q8φ: D4/C22C2 ⊆ Out C4xD7112(C4xD7).41D4448,1079
(C4xD7).42D4 = D7xC8:C22φ: D4/C22C2 ⊆ Out C4xD7568+(C4xD7).42D4448,1225
(C4xD7).43D4 = SD16:D14φ: D4/C22C2 ⊆ Out C4xD71128-(C4xD7).43D4448,1226
(C4xD7).44D4 = D7xC8.C22φ: D4/C22C2 ⊆ Out C4xD71128-(C4xD7).44D4448,1229
(C4xD7).45D4 = D56:C22φ: D4/C22C2 ⊆ Out C4xD71128+(C4xD7).45D4448,1230
(C4xD7).46D4 = D14:M4(2)φ: D4/C22C2 ⊆ Out C4xD7112(C4xD7).46D4448,260
(C4xD7).47D4 = D14:C8:C2φ: D4/C22C2 ⊆ Out C4xD7224(C4xD7).47D4448,261
(C4xD7).48D4 = C42:D14φ: D4/C22C2 ⊆ Out C4xD71124(C4xD7).48D4448,355
(C4xD7).49D4 = C42.30D14φ: D4/C22C2 ⊆ Out C4xD7224(C4xD7).49D4448,373
(C4xD7).50D4 = M4(2).25D14φ: D4/C22C2 ⊆ Out C4xD71124(C4xD7).50D4448,427
(C4xD7).51D4 = D8:10D14φ: D4/C22C2 ⊆ Out C4xD71124(C4xD7).51D4448,1221
(C4xD7).52D4 = D7xC22:C8φ: trivial image112(C4xD7).52D4448,258
(C4xD7).53D4 = D7xC4:C8φ: trivial image224(C4xD7).53D4448,366
(C4xD7).54D4 = D7xC4oD8φ: trivial image1124(C4xD7).54D4448,1220

׿
x
:
Z
F
o
wr
Q
<