Copied to
clipboard

G = D7×C4.D4order 448 = 26·7

Direct product of D7 and C4.D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×C4.D4, M4(2)⋊14D14, (C4×D7).1D4, C4.146(D4×D7), C28.89(C2×D4), C23.6(C4×D7), C28.D43C2, (D7×M4(2))⋊5C2, (C2×C28).1C23, (C23×D7).2C4, (C2×D4).121D14, C28.46D45C2, C4.Dic71C22, (C2×D28).38C22, (D4×C14).11C22, D14.16(C22⋊C4), (C7×M4(2))⋊12C22, Dic7.4(C22⋊C4), (C2×D4×D7).2C2, C71(C2×C4.D4), (C2×C7⋊D4).1C4, (C2×C4×D7).1C22, C22.14(C2×C4×D7), (C7×C4.D4)⋊5C2, C2.13(D7×C22⋊C4), (C2×C4).1(C22×D7), C14.12(C2×C22⋊C4), (C22×C14).6(C2×C4), (C2×C14).8(C22×C4), (C22×D7).2(C2×C4), (C2×Dic7).19(C2×C4), SmallGroup(448,278)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D7×C4.D4
C1C7C14C28C2×C28C2×C4×D7C2×D4×D7 — D7×C4.D4
C7C14C2×C14 — D7×C4.D4
C1C2C2×C4C4.D4

Generators and relations for D7×C4.D4
 G = < a,b,c,d,e | a7=b2=c4=1, d4=c2, e2=c, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=c-1d3 >

Subgroups: 1228 in 186 conjugacy classes, 53 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, D7, D7, C14, C14, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×D4, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C4.D4, C4.D4, C2×M4(2), C22×D4, C7⋊C8, C56, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×D7, C22×D7, C22×C14, C2×C4.D4, C8×D7, C8⋊D7, C4.Dic7, C7×M4(2), C2×C4×D7, C2×D28, D4×D7, C2×C7⋊D4, D4×C14, C23×D7, C28.46D4, C28.D4, C7×C4.D4, D7×M4(2), C2×D4×D7, D7×C4.D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C4.D4, C2×C22⋊C4, C4×D7, C22×D7, C2×C4.D4, C2×C4×D7, D4×D7, D7×C22⋊C4, D7×C4.D4

Smallest permutation representation of D7×C4.D4
On 56 points
Generators in S56
(1 37 12 42 32 24 56)(2 38 13 43 25 17 49)(3 39 14 44 26 18 50)(4 40 15 45 27 19 51)(5 33 16 46 28 20 52)(6 34 9 47 29 21 53)(7 35 10 48 30 22 54)(8 36 11 41 31 23 55)
(1 56)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 55)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)(17 38)(18 39)(19 40)(20 33)(21 34)(22 35)(23 36)(24 37)
(1 7 5 3)(2 4 6 8)(9 11 13 15)(10 16 14 12)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)(33 39 37 35)(34 36 38 40)(41 43 45 47)(42 48 46 44)(49 51 53 55)(50 56 54 52)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(1 8 7 2 5 4 3 6)(9 12 11 10 13 16 15 14)(17 20 19 18 21 24 23 22)(25 28 27 26 29 32 31 30)(33 40 39 34 37 36 35 38)(41 48 43 46 45 44 47 42)(49 52 51 50 53 56 55 54)

G:=sub<Sym(56)| (1,37,12,42,32,24,56)(2,38,13,43,25,17,49)(3,39,14,44,26,18,50)(4,40,15,45,27,19,51)(5,33,16,46,28,20,52)(6,34,9,47,29,21,53)(7,35,10,48,30,22,54)(8,36,11,41,31,23,55), (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37), (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,39,37,35)(34,36,38,40)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,8,7,2,5,4,3,6)(9,12,11,10,13,16,15,14)(17,20,19,18,21,24,23,22)(25,28,27,26,29,32,31,30)(33,40,39,34,37,36,35,38)(41,48,43,46,45,44,47,42)(49,52,51,50,53,56,55,54)>;

G:=Group( (1,37,12,42,32,24,56)(2,38,13,43,25,17,49)(3,39,14,44,26,18,50)(4,40,15,45,27,19,51)(5,33,16,46,28,20,52)(6,34,9,47,29,21,53)(7,35,10,48,30,22,54)(8,36,11,41,31,23,55), (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37), (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,39,37,35)(34,36,38,40)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,8,7,2,5,4,3,6)(9,12,11,10,13,16,15,14)(17,20,19,18,21,24,23,22)(25,28,27,26,29,32,31,30)(33,40,39,34,37,36,35,38)(41,48,43,46,45,44,47,42)(49,52,51,50,53,56,55,54) );

G=PermutationGroup([[(1,37,12,42,32,24,56),(2,38,13,43,25,17,49),(3,39,14,44,26,18,50),(4,40,15,45,27,19,51),(5,33,16,46,28,20,52),(6,34,9,47,29,21,53),(7,35,10,48,30,22,54),(8,36,11,41,31,23,55)], [(1,56),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,55),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28),(17,38),(18,39),(19,40),(20,33),(21,34),(22,35),(23,36),(24,37)], [(1,7,5,3),(2,4,6,8),(9,11,13,15),(10,16,14,12),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28),(33,39,37,35),(34,36,38,40),(41,43,45,47),(42,48,46,44),(49,51,53,55),(50,56,54,52)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(1,8,7,2,5,4,3,6),(9,12,11,10,13,16,15,14),(17,20,19,18,21,24,23,22),(25,28,27,26,29,32,31,30),(33,40,39,34,37,36,35,38),(41,48,43,46,45,44,47,42),(49,52,51,50,53,56,55,54)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D7A7B7C8A8B8C8D8E8F8G8H14A14B14C14D14E14F14G···14L28A···28F56A···56L
order122222222244447778888888814141414141414···1428···2856···56
size11244771428282214142224444282828282224448···84···48···8

55 irreducible representations

dim1111111122222448
type+++++++++++++
imageC1C2C2C2C2C2C4C4D4D7D14D14C4×D7C4.D4D4×D7D7×C4.D4
kernelD7×C4.D4C28.46D4C28.D4C7×C4.D4D7×M4(2)C2×D4×D7C2×C7⋊D4C23×D7C4×D7C4.D4M4(2)C2×D4C23D7C4C1
# reps12112144436312263

Matrix representation of D7×C4.D4 in GL6(𝔽113)

010000
112240000
001000
000100
000010
000001
,
010000
100000
00112000
00011200
00001120
00000112
,
11200000
01120000
0011211100
001100
0001811269
00980361
,
9800000
0980000
00980362
00000112
00001595
001100
,
9800000
0980000
00980360
000001
00069150
001100

G:=sub<GL(6,GF(113))| [0,112,0,0,0,0,1,24,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,1,0,98,0,0,111,1,18,0,0,0,0,0,112,36,0,0,0,0,69,1],[98,0,0,0,0,0,0,98,0,0,0,0,0,0,98,0,0,1,0,0,0,0,0,1,0,0,36,0,15,0,0,0,2,112,95,0],[98,0,0,0,0,0,0,98,0,0,0,0,0,0,98,0,0,1,0,0,0,0,69,1,0,0,36,0,15,0,0,0,0,1,0,0] >;

D7×C4.D4 in GAP, Magma, Sage, TeX

D_7\times C_4.D_4
% in TeX

G:=Group("D7xC4.D4");
// GroupNames label

G:=SmallGroup(448,278);
// by ID

G=gap.SmallGroup(448,278);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,58,570,136,438,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^4=1,d^4=c^2,e^2=c,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=c^-1*d^3>;
// generators/relations

׿
×
𝔽