Copied to
clipboard

?

G = C2×C10×SL2(𝔽3)  order 480 = 25·3·5

Direct product of C2×C10 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: C2×C10×SL2(𝔽3), Q8⋊(C2×C30), (Q8×C10)⋊4C6, (C2×Q8)⋊2C30, C23.6(C5×A4), (C22×Q8)⋊1C15, C22.8(C10×A4), (C22×C10).6A4, C10.14(C22×A4), (Q8×C2×C10)⋊1C3, C2.3(A4×C2×C10), (C5×Q8)⋊4(C2×C6), (C2×C10).17(C2×A4), SmallGroup(480,1128)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C2×C10×SL2(𝔽3)
C1C2Q8C5×Q8C5×SL2(𝔽3)C10×SL2(𝔽3) — C2×C10×SL2(𝔽3)
Q8 — C2×C10×SL2(𝔽3)

Subgroups: 294 in 122 conjugacy classes, 52 normal (14 characteristic)
C1, C2, C2 [×6], C3, C4 [×4], C22 [×7], C5, C6 [×7], C2×C4 [×6], Q8, Q8 [×5], C23, C10, C10 [×6], C2×C6 [×7], C15, C22×C4, C2×Q8 [×3], C2×Q8 [×3], C20 [×4], C2×C10 [×7], SL2(𝔽3), C22×C6, C30 [×7], C22×Q8, C2×C20 [×6], C5×Q8, C5×Q8 [×5], C22×C10, C2×SL2(𝔽3) [×3], C2×C30 [×7], C22×C20, Q8×C10 [×3], Q8×C10 [×3], C22×SL2(𝔽3), C5×SL2(𝔽3), C22×C30, Q8×C2×C10, C10×SL2(𝔽3) [×3], C2×C10×SL2(𝔽3)

Quotients:
C1, C2 [×3], C3, C22, C5, C6 [×3], C10 [×3], A4, C2×C6, C15, C2×C10, SL2(𝔽3) [×4], C2×A4 [×3], C30 [×3], C2×SL2(𝔽3) [×6], C22×A4, C5×A4, C2×C30, C22×SL2(𝔽3), C5×SL2(𝔽3) [×4], C10×A4 [×3], C10×SL2(𝔽3) [×6], A4×C2×C10, C2×C10×SL2(𝔽3)

Generators and relations
 G = < a,b,c,d,e | a2=b10=c4=e3=1, d2=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ece-1=d, ede-1=cd >

Smallest permutation representation
On 160 points
Generators in S160
(1 152)(2 153)(3 154)(4 155)(5 156)(6 157)(7 158)(8 159)(9 160)(10 151)(11 102)(12 103)(13 104)(14 105)(15 106)(16 107)(17 108)(18 109)(19 110)(20 101)(21 137)(22 138)(23 139)(24 140)(25 131)(26 132)(27 133)(28 134)(29 135)(30 136)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 129)(42 130)(43 121)(44 122)(45 123)(46 124)(47 125)(48 126)(49 127)(50 128)(51 142)(52 143)(53 144)(54 145)(55 146)(56 147)(57 148)(58 149)(59 150)(60 141)(61 87)(62 88)(63 89)(64 90)(65 81)(66 82)(67 83)(68 84)(69 85)(70 86)(71 97)(72 98)(73 99)(74 100)(75 91)(76 92)(77 93)(78 94)(79 95)(80 96)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 98 125 142)(2 99 126 143)(3 100 127 144)(4 91 128 145)(5 92 129 146)(6 93 130 147)(7 94 121 148)(8 95 122 149)(9 96 123 150)(10 97 124 141)(11 26 65 39)(12 27 66 40)(13 28 67 31)(14 29 68 32)(15 30 69 33)(16 21 70 34)(17 22 61 35)(18 23 62 36)(19 24 63 37)(20 25 64 38)(41 55 156 76)(42 56 157 77)(43 57 158 78)(44 58 159 79)(45 59 160 80)(46 60 151 71)(47 51 152 72)(48 52 153 73)(49 53 154 74)(50 54 155 75)(81 119 102 132)(82 120 103 133)(83 111 104 134)(84 112 105 135)(85 113 106 136)(86 114 107 137)(87 115 108 138)(88 116 109 139)(89 117 110 140)(90 118 101 131)
(1 86 125 107)(2 87 126 108)(3 88 127 109)(4 89 128 110)(5 90 129 101)(6 81 130 102)(7 82 121 103)(8 83 122 104)(9 84 123 105)(10 85 124 106)(11 157 65 42)(12 158 66 43)(13 159 67 44)(14 160 68 45)(15 151 69 46)(16 152 70 47)(17 153 61 48)(18 154 62 49)(19 155 63 50)(20 156 64 41)(21 51 34 72)(22 52 35 73)(23 53 36 74)(24 54 37 75)(25 55 38 76)(26 56 39 77)(27 57 40 78)(28 58 31 79)(29 59 32 80)(30 60 33 71)(91 140 145 117)(92 131 146 118)(93 132 147 119)(94 133 148 120)(95 134 149 111)(96 135 150 112)(97 136 141 113)(98 137 142 114)(99 138 143 115)(100 139 144 116)
(11 56 39)(12 57 40)(13 58 31)(14 59 32)(15 60 33)(16 51 34)(17 52 35)(18 53 36)(19 54 37)(20 55 38)(21 70 72)(22 61 73)(23 62 74)(24 63 75)(25 64 76)(26 65 77)(27 66 78)(28 67 79)(29 68 80)(30 69 71)(81 93 132)(82 94 133)(83 95 134)(84 96 135)(85 97 136)(86 98 137)(87 99 138)(88 100 139)(89 91 140)(90 92 131)(101 146 118)(102 147 119)(103 148 120)(104 149 111)(105 150 112)(106 141 113)(107 142 114)(108 143 115)(109 144 116)(110 145 117)

G:=sub<Sym(160)| (1,152)(2,153)(3,154)(4,155)(5,156)(6,157)(7,158)(8,159)(9,160)(10,151)(11,102)(12,103)(13,104)(14,105)(15,106)(16,107)(17,108)(18,109)(19,110)(20,101)(21,137)(22,138)(23,139)(24,140)(25,131)(26,132)(27,133)(28,134)(29,135)(30,136)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,129)(42,130)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,87)(62,88)(63,89)(64,90)(65,81)(66,82)(67,83)(68,84)(69,85)(70,86)(71,97)(72,98)(73,99)(74,100)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,98,125,142)(2,99,126,143)(3,100,127,144)(4,91,128,145)(5,92,129,146)(6,93,130,147)(7,94,121,148)(8,95,122,149)(9,96,123,150)(10,97,124,141)(11,26,65,39)(12,27,66,40)(13,28,67,31)(14,29,68,32)(15,30,69,33)(16,21,70,34)(17,22,61,35)(18,23,62,36)(19,24,63,37)(20,25,64,38)(41,55,156,76)(42,56,157,77)(43,57,158,78)(44,58,159,79)(45,59,160,80)(46,60,151,71)(47,51,152,72)(48,52,153,73)(49,53,154,74)(50,54,155,75)(81,119,102,132)(82,120,103,133)(83,111,104,134)(84,112,105,135)(85,113,106,136)(86,114,107,137)(87,115,108,138)(88,116,109,139)(89,117,110,140)(90,118,101,131), (1,86,125,107)(2,87,126,108)(3,88,127,109)(4,89,128,110)(5,90,129,101)(6,81,130,102)(7,82,121,103)(8,83,122,104)(9,84,123,105)(10,85,124,106)(11,157,65,42)(12,158,66,43)(13,159,67,44)(14,160,68,45)(15,151,69,46)(16,152,70,47)(17,153,61,48)(18,154,62,49)(19,155,63,50)(20,156,64,41)(21,51,34,72)(22,52,35,73)(23,53,36,74)(24,54,37,75)(25,55,38,76)(26,56,39,77)(27,57,40,78)(28,58,31,79)(29,59,32,80)(30,60,33,71)(91,140,145,117)(92,131,146,118)(93,132,147,119)(94,133,148,120)(95,134,149,111)(96,135,150,112)(97,136,141,113)(98,137,142,114)(99,138,143,115)(100,139,144,116), (11,56,39)(12,57,40)(13,58,31)(14,59,32)(15,60,33)(16,51,34)(17,52,35)(18,53,36)(19,54,37)(20,55,38)(21,70,72)(22,61,73)(23,62,74)(24,63,75)(25,64,76)(26,65,77)(27,66,78)(28,67,79)(29,68,80)(30,69,71)(81,93,132)(82,94,133)(83,95,134)(84,96,135)(85,97,136)(86,98,137)(87,99,138)(88,100,139)(89,91,140)(90,92,131)(101,146,118)(102,147,119)(103,148,120)(104,149,111)(105,150,112)(106,141,113)(107,142,114)(108,143,115)(109,144,116)(110,145,117)>;

G:=Group( (1,152)(2,153)(3,154)(4,155)(5,156)(6,157)(7,158)(8,159)(9,160)(10,151)(11,102)(12,103)(13,104)(14,105)(15,106)(16,107)(17,108)(18,109)(19,110)(20,101)(21,137)(22,138)(23,139)(24,140)(25,131)(26,132)(27,133)(28,134)(29,135)(30,136)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,129)(42,130)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,87)(62,88)(63,89)(64,90)(65,81)(66,82)(67,83)(68,84)(69,85)(70,86)(71,97)(72,98)(73,99)(74,100)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,98,125,142)(2,99,126,143)(3,100,127,144)(4,91,128,145)(5,92,129,146)(6,93,130,147)(7,94,121,148)(8,95,122,149)(9,96,123,150)(10,97,124,141)(11,26,65,39)(12,27,66,40)(13,28,67,31)(14,29,68,32)(15,30,69,33)(16,21,70,34)(17,22,61,35)(18,23,62,36)(19,24,63,37)(20,25,64,38)(41,55,156,76)(42,56,157,77)(43,57,158,78)(44,58,159,79)(45,59,160,80)(46,60,151,71)(47,51,152,72)(48,52,153,73)(49,53,154,74)(50,54,155,75)(81,119,102,132)(82,120,103,133)(83,111,104,134)(84,112,105,135)(85,113,106,136)(86,114,107,137)(87,115,108,138)(88,116,109,139)(89,117,110,140)(90,118,101,131), (1,86,125,107)(2,87,126,108)(3,88,127,109)(4,89,128,110)(5,90,129,101)(6,81,130,102)(7,82,121,103)(8,83,122,104)(9,84,123,105)(10,85,124,106)(11,157,65,42)(12,158,66,43)(13,159,67,44)(14,160,68,45)(15,151,69,46)(16,152,70,47)(17,153,61,48)(18,154,62,49)(19,155,63,50)(20,156,64,41)(21,51,34,72)(22,52,35,73)(23,53,36,74)(24,54,37,75)(25,55,38,76)(26,56,39,77)(27,57,40,78)(28,58,31,79)(29,59,32,80)(30,60,33,71)(91,140,145,117)(92,131,146,118)(93,132,147,119)(94,133,148,120)(95,134,149,111)(96,135,150,112)(97,136,141,113)(98,137,142,114)(99,138,143,115)(100,139,144,116), (11,56,39)(12,57,40)(13,58,31)(14,59,32)(15,60,33)(16,51,34)(17,52,35)(18,53,36)(19,54,37)(20,55,38)(21,70,72)(22,61,73)(23,62,74)(24,63,75)(25,64,76)(26,65,77)(27,66,78)(28,67,79)(29,68,80)(30,69,71)(81,93,132)(82,94,133)(83,95,134)(84,96,135)(85,97,136)(86,98,137)(87,99,138)(88,100,139)(89,91,140)(90,92,131)(101,146,118)(102,147,119)(103,148,120)(104,149,111)(105,150,112)(106,141,113)(107,142,114)(108,143,115)(109,144,116)(110,145,117) );

G=PermutationGroup([(1,152),(2,153),(3,154),(4,155),(5,156),(6,157),(7,158),(8,159),(9,160),(10,151),(11,102),(12,103),(13,104),(14,105),(15,106),(16,107),(17,108),(18,109),(19,110),(20,101),(21,137),(22,138),(23,139),(24,140),(25,131),(26,132),(27,133),(28,134),(29,135),(30,136),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,129),(42,130),(43,121),(44,122),(45,123),(46,124),(47,125),(48,126),(49,127),(50,128),(51,142),(52,143),(53,144),(54,145),(55,146),(56,147),(57,148),(58,149),(59,150),(60,141),(61,87),(62,88),(63,89),(64,90),(65,81),(66,82),(67,83),(68,84),(69,85),(70,86),(71,97),(72,98),(73,99),(74,100),(75,91),(76,92),(77,93),(78,94),(79,95),(80,96)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,98,125,142),(2,99,126,143),(3,100,127,144),(4,91,128,145),(5,92,129,146),(6,93,130,147),(7,94,121,148),(8,95,122,149),(9,96,123,150),(10,97,124,141),(11,26,65,39),(12,27,66,40),(13,28,67,31),(14,29,68,32),(15,30,69,33),(16,21,70,34),(17,22,61,35),(18,23,62,36),(19,24,63,37),(20,25,64,38),(41,55,156,76),(42,56,157,77),(43,57,158,78),(44,58,159,79),(45,59,160,80),(46,60,151,71),(47,51,152,72),(48,52,153,73),(49,53,154,74),(50,54,155,75),(81,119,102,132),(82,120,103,133),(83,111,104,134),(84,112,105,135),(85,113,106,136),(86,114,107,137),(87,115,108,138),(88,116,109,139),(89,117,110,140),(90,118,101,131)], [(1,86,125,107),(2,87,126,108),(3,88,127,109),(4,89,128,110),(5,90,129,101),(6,81,130,102),(7,82,121,103),(8,83,122,104),(9,84,123,105),(10,85,124,106),(11,157,65,42),(12,158,66,43),(13,159,67,44),(14,160,68,45),(15,151,69,46),(16,152,70,47),(17,153,61,48),(18,154,62,49),(19,155,63,50),(20,156,64,41),(21,51,34,72),(22,52,35,73),(23,53,36,74),(24,54,37,75),(25,55,38,76),(26,56,39,77),(27,57,40,78),(28,58,31,79),(29,59,32,80),(30,60,33,71),(91,140,145,117),(92,131,146,118),(93,132,147,119),(94,133,148,120),(95,134,149,111),(96,135,150,112),(97,136,141,113),(98,137,142,114),(99,138,143,115),(100,139,144,116)], [(11,56,39),(12,57,40),(13,58,31),(14,59,32),(15,60,33),(16,51,34),(17,52,35),(18,53,36),(19,54,37),(20,55,38),(21,70,72),(22,61,73),(23,62,74),(24,63,75),(25,64,76),(26,65,77),(27,66,78),(28,67,79),(29,68,80),(30,69,71),(81,93,132),(82,94,133),(83,95,134),(84,96,135),(85,97,136),(86,98,137),(87,99,138),(88,100,139),(89,91,140),(90,92,131),(101,146,118),(102,147,119),(103,148,120),(104,149,111),(105,150,112),(106,141,113),(107,142,114),(108,143,115),(109,144,116),(110,145,117)])

Matrix representation G ⊆ GL4(𝔽61) generated by

60000
0100
0010
0001
,
1000
0300
0030
0003
,
1000
0100
001448
004847
,
1000
0100
00060
0010
,
47000
01300
0010
004847
G:=sub<GL(4,GF(61))| [60,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[1,0,0,0,0,1,0,0,0,0,14,48,0,0,48,47],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,60,0],[47,0,0,0,0,13,0,0,0,0,1,48,0,0,0,47] >;

140 conjugacy classes

class 1 2A···2G3A3B4A4B4C4D5A5B5C5D6A···6N10A···10AB15A···15H20A···20P30A···30BD
order12···233444455556···610···1015···1520···2030···30
size11···144666611114···41···14···46···64···4

140 irreducible representations

dim111111112223333
type++-++
imageC1C2C3C5C6C10C15C30SL2(𝔽3)SL2(𝔽3)C5×SL2(𝔽3)A4C2×A4C5×A4C10×A4
kernelC2×C10×SL2(𝔽3)C10×SL2(𝔽3)Q8×C2×C10C22×SL2(𝔽3)Q8×C10C2×SL2(𝔽3)C22×Q8C2×Q8C2×C10C2×C10C22C22×C10C2×C10C23C22
# reps1324612824484813412

In GAP, Magma, Sage, TeX

C_2\times C_{10}\times SL_2({\mathbb F}_3)
% in TeX

G:=Group("C2xC10xSL(2,3)");
// GroupNames label

G:=SmallGroup(480,1128);
// by ID

G=gap.SmallGroup(480,1128);
# by ID

G:=PCGroup([7,-2,-2,-3,-5,-2,2,-2,1068,172,1909,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^4=e^3=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,e*c*e^-1=d,e*d*e^-1=c*d>;
// generators/relations

׿
×
𝔽