direct product, non-abelian, not soluble
Aliases: C4×S5, CO3(𝔽5), (C2×S5).C2, A5⋊C4⋊2C2, (C4×A5)⋊3C2, A5⋊1(C2×C4), C2.1(C2×S5), (C2×A5).1C22, SmallGroup(480,943)
Series: Chief►Derived ►Lower central ►Upper central
A5 — C4×S5 |
A5 — C4×S5 |
Subgroups: 956 in 98 conjugacy classes, 11 normal (9 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2×C4, D4, C23, D5, C10, Dic3, C12, A4, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, F5, D10, C4×S3, C2×Dic3, C2×C12, S4, C2×A4, C22×S3, C4×D4, C4×D5, C2×F5, A4⋊C4, C4×A4, S3×C2×C4, C2×S4, A5, C4×F5, C4×S4, S5, C2×A5, A5⋊C4, C4×A5, C2×S5, C4×S5
Quotients: C1, C2, C4, C22, C2×C4, S5, C2×S5, C4×S5
Character table of C4×S5
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5 | 6A | 6B | 6C | 10 | 12A | 12B | 12C | 12D | 20A | 20B | |
size | 1 | 1 | 10 | 10 | 15 | 15 | 20 | 1 | 1 | 10 | 10 | 15 | 15 | 30 | 30 | 30 | 30 | 24 | 20 | 20 | 20 | 24 | 20 | 20 | 20 | 20 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | i | -i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -i | i | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | -i | i | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | -i | i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | i | -i | i | -i | -i | i | linear of order 4 |
ρ9 | 4 | 4 | 2 | 2 | 0 | 0 | 1 | 4 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ10 | 4 | 4 | 2 | 2 | 0 | 0 | 1 | -4 | -4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from C2×S5 |
ρ11 | 4 | 4 | -2 | -2 | 0 | 0 | 1 | 4 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from S5 |
ρ12 | 4 | 4 | -2 | -2 | 0 | 0 | 1 | -4 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×S5 |
ρ13 | 4 | -4 | 2 | -2 | 0 | 0 | 1 | 4i | -4i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | complex faithful |
ρ14 | 4 | -4 | 2 | -2 | 0 | 0 | 1 | -4i | 4i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | complex faithful |
ρ15 | 4 | -4 | -2 | 2 | 0 | 0 | 1 | 4i | -4i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | -i | i | -i | i | -i | i | complex faithful |
ρ16 | 4 | -4 | -2 | 2 | 0 | 0 | 1 | -4i | 4i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | i | -i | i | -i | i | -i | complex faithful |
ρ17 | 5 | 5 | -1 | -1 | 1 | 1 | -1 | 5 | 5 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | -1 | -1 | -1 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S5 |
ρ18 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 0 | 1 | -1 | 1 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | orthogonal lifted from S5 |
ρ19 | 5 | 5 | -1 | -1 | 1 | 1 | -1 | -5 | -5 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | -1 | -1 | -1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from C2×S5 |
ρ20 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | -5 | -5 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 0 | 1 | -1 | 1 | 0 | 1 | 1 | -1 | -1 | 0 | 0 | orthogonal lifted from C2×S5 |
ρ21 | 5 | -5 | -1 | 1 | -1 | 1 | -1 | -5i | 5i | i | -i | -i | i | -i | i | -1 | 1 | 0 | -1 | 1 | 1 | 0 | -i | i | -i | i | 0 | 0 | complex faithful |
ρ22 | 5 | -5 | 1 | -1 | -1 | 1 | -1 | -5i | 5i | -i | i | -i | i | i | -i | 1 | -1 | 0 | 1 | 1 | -1 | 0 | -i | i | i | -i | 0 | 0 | complex faithful |
ρ23 | 5 | -5 | 1 | -1 | -1 | 1 | -1 | 5i | -5i | i | -i | i | -i | -i | i | 1 | -1 | 0 | 1 | 1 | -1 | 0 | i | -i | -i | i | 0 | 0 | complex faithful |
ρ24 | 5 | -5 | -1 | 1 | -1 | 1 | -1 | 5i | -5i | -i | i | i | -i | i | -i | -1 | 1 | 0 | -1 | 1 | 1 | 0 | i | -i | i | -i | 0 | 0 | complex faithful |
ρ25 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from S5 |
ρ26 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | -6 | -6 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from C2×S5 |
ρ27 | 6 | -6 | 0 | 0 | 2 | -2 | 0 | 6i | -6i | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | i | -i | complex faithful |
ρ28 | 6 | -6 | 0 | 0 | 2 | -2 | 0 | -6i | 6i | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -i | i | complex faithful |
(1 8 12 15)(2 17 13 3)(4 9 18 6)(5 20 10 7)(11 16 14 19)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12 13 14)(15 16 17 18 19 20)
G:=sub<Sym(20)| (1,8,12,15)(2,17,13,3)(4,9,18,6)(5,20,10,7)(11,16,14,19), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20)>;
G:=Group( (1,8,12,15)(2,17,13,3)(4,9,18,6)(5,20,10,7)(11,16,14,19), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20) );
G=PermutationGroup([[(1,8,12,15),(2,17,13,3),(4,9,18,6),(5,20,10,7),(11,16,14,19)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12,13,14),(15,16,17,18,19,20)]])
G:=TransitiveGroup(20,123);
(1 16 4 9)(2 17 23 14)(3 10 20 13)(5 12 22 15)(6 11 19 8)(7 21 18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
G:=sub<Sym(24)| (1,16,4,9)(2,17,23,14)(3,10,20,13)(5,12,22,15)(6,11,19,8)(7,21,18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;
G:=Group( (1,16,4,9)(2,17,23,14)(3,10,20,13)(5,12,22,15)(6,11,19,8)(7,21,18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );
G=PermutationGroup([[(1,16,4,9),(2,17,23,14),(3,10,20,13),(5,12,22,15),(6,11,19,8),(7,21,18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])
G:=TransitiveGroup(24,1347);
(1 15 13 9)(2 16 22 20)(4 24 8 6)(5 21)(7 11 17 23)(12 14)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
G:=sub<Sym(24)| (1,15,13,9)(2,16,22,20)(4,24,8,6)(5,21)(7,11,17,23)(12,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;
G:=Group( (1,15,13,9)(2,16,22,20)(4,24,8,6)(5,21)(7,11,17,23)(12,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );
G=PermutationGroup([[(1,15,13,9),(2,16,22,20),(4,24,8,6),(5,21),(7,11,17,23),(12,14)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])
G:=TransitiveGroup(24,1348);
Matrix representation of C4×S5 ►in GL3(𝔽5) generated by
3 | 0 | 1 |
3 | 4 | 0 |
3 | 0 | 0 |
0 | 3 | 3 |
0 | 3 | 2 |
3 | 3 | 4 |
G:=sub<GL(3,GF(5))| [3,3,3,0,4,0,1,0,0],[0,0,3,3,3,3,3,2,4] >;
C4×S5 in GAP, Magma, Sage, TeX
C_4\times S_5
% in TeX
G:=Group("C4xS5");
// GroupNames label
G:=SmallGroup(480,943);
// by ID
G=gap.SmallGroup(480,943);
# by ID
Export