extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(C2×F5) = D10.D12 | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 120 | 8- | (C2xC6).1(C2xF5) | 480,248 |
(C2×C6).2(C2×F5) = D10.4D12 | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 120 | 8+ | (C2xC6).2(C2xF5) | 480,249 |
(C2×C6).3(C2×F5) = Dic5.D12 | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 120 | 8+ | (C2xC6).3(C2xF5) | 480,250 |
(C2×C6).4(C2×F5) = Dic5.4D12 | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 240 | 8- | (C2xC6).4(C2xF5) | 480,251 |
(C2×C6).5(C2×F5) = C22⋊F5.S3 | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 120 | 8- | (C2xC6).5(C2xF5) | 480,999 |
(C2×C6).6(C2×F5) = S3×C22.F5 | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 120 | 8- | (C2xC6).6(C2xF5) | 480,1004 |
(C2×C6).7(C2×F5) = D15⋊C8⋊C2 | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 240 | 8 | (C2xC6).7(C2xF5) | 480,1005 |
(C2×C6).8(C2×F5) = D15⋊2M4(2) | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 120 | 8+ | (C2xC6).8(C2xF5) | 480,1007 |
(C2×C6).9(C2×F5) = Dic10.Dic3 | φ: C2×F5/D5 → C22 ⊆ Aut C2×C6 | 240 | 8 | (C2xC6).9(C2xF5) | 480,1066 |
(C2×C6).10(C2×F5) = C3×D4.F5 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 240 | 8 | (C2xC6).10(C2xF5) | 480,1053 |
(C2×C6).11(C2×F5) = D10.20D12 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).11(C2xF5) | 480,243 |
(C2×C6).12(C2×F5) = Dic3×C5⋊C8 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).12(C2xF5) | 480,244 |
(C2×C6).13(C2×F5) = C30.M4(2) | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).13(C2xF5) | 480,245 |
(C2×C6).14(C2×F5) = Dic5.22D12 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).14(C2xF5) | 480,246 |
(C2×C6).15(C2×F5) = D30⋊C8 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).15(C2xF5) | 480,247 |
(C2×C6).16(C2×F5) = C30.4M4(2) | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).16(C2xF5) | 480,252 |
(C2×C6).17(C2×F5) = Dic15⋊C8 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).17(C2xF5) | 480,253 |
(C2×C6).18(C2×F5) = C2×Dic3×F5 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).18(C2xF5) | 480,998 |
(C2×C6).19(C2×F5) = C2×D6⋊F5 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).19(C2xF5) | 480,1000 |
(C2×C6).20(C2×F5) = C2×Dic3⋊F5 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).20(C2xF5) | 480,1001 |
(C2×C6).21(C2×F5) = C2×S3×C5⋊C8 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).21(C2xF5) | 480,1002 |
(C2×C6).22(C2×F5) = C5⋊C8.D6 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 240 | 8 | (C2xC6).22(C2xF5) | 480,1003 |
(C2×C6).23(C2×F5) = C2×D15⋊C8 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).23(C2xF5) | 480,1006 |
(C2×C6).24(C2×F5) = C2×D6.F5 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).24(C2xF5) | 480,1008 |
(C2×C6).25(C2×F5) = C2×Dic3.F5 | φ: C2×F5/F5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).25(C2xF5) | 480,1009 |
(C2×C6).26(C2×F5) = C3×D10.D4 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).26(C2xF5) | 480,279 |
(C2×C6).27(C2×F5) = C3×Dic5.D4 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).27(C2xF5) | 480,285 |
(C2×C6).28(C2×F5) = C3×C23⋊F5 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).28(C2xF5) | 480,291 |
(C2×C6).29(C2×F5) = C3×C23.F5 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).29(C2xF5) | 480,293 |
(C2×C6).30(C2×F5) = C3×D5⋊M4(2) | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).30(C2xF5) | 480,1049 |
(C2×C6).31(C2×F5) = C3×D10.C23 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).31(C2xF5) | 480,1052 |
(C2×C6).32(C2×F5) = (C2×C60)⋊C4 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).32(C2xF5) | 480,304 |
(C2×C6).33(C2×F5) = C4×C15⋊C8 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).33(C2xF5) | 480,305 |
(C2×C6).34(C2×F5) = C60⋊C8 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).34(C2xF5) | 480,306 |
(C2×C6).35(C2×F5) = C30.11C42 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).35(C2xF5) | 480,307 |
(C2×C6).36(C2×F5) = C30.7M4(2) | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).36(C2xF5) | 480,308 |
(C2×C6).37(C2×F5) = Dic5.13D12 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).37(C2xF5) | 480,309 |
(C2×C6).38(C2×F5) = (C2×C60).C4 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).38(C2xF5) | 480,310 |
(C2×C6).39(C2×F5) = D10.10D12 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).39(C2xF5) | 480,311 |
(C2×C6).40(C2×F5) = C3⋊(C23⋊F5) | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).40(C2xF5) | 480,316 |
(C2×C6).41(C2×F5) = C30.22M4(2) | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).41(C2xF5) | 480,317 |
(C2×C6).42(C2×F5) = C5⋊(C12.D4) | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).42(C2xF5) | 480,318 |
(C2×C6).43(C2×F5) = C2×C60.C4 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).43(C2xF5) | 480,1060 |
(C2×C6).44(C2×F5) = C2×C12.F5 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).44(C2xF5) | 480,1061 |
(C2×C6).45(C2×F5) = C60.59(C2×C4) | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).45(C2xF5) | 480,1062 |
(C2×C6).46(C2×F5) = C2×C4×C3⋊F5 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).46(C2xF5) | 480,1063 |
(C2×C6).47(C2×F5) = C2×C60⋊C4 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).47(C2xF5) | 480,1064 |
(C2×C6).48(C2×F5) = (C2×C12)⋊6F5 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).48(C2xF5) | 480,1065 |
(C2×C6).49(C2×F5) = C22×C15⋊C8 | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).49(C2xF5) | 480,1070 |
(C2×C6).50(C2×F5) = C2×C15⋊8M4(2) | φ: C2×F5/D10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).50(C2xF5) | 480,1071 |
(C2×C6).51(C2×F5) = C12×C5⋊C8 | central extension (φ=1) | 480 | | (C2xC6).51(C2xF5) | 480,280 |
(C2×C6).52(C2×F5) = C3×C20⋊C8 | central extension (φ=1) | 480 | | (C2xC6).52(C2xF5) | 480,281 |
(C2×C6).53(C2×F5) = C3×C10.C42 | central extension (φ=1) | 480 | | (C2xC6).53(C2xF5) | 480,282 |
(C2×C6).54(C2×F5) = C3×D10⋊C8 | central extension (φ=1) | 240 | | (C2xC6).54(C2xF5) | 480,283 |
(C2×C6).55(C2×F5) = C3×Dic5⋊C8 | central extension (φ=1) | 480 | | (C2xC6).55(C2xF5) | 480,284 |
(C2×C6).56(C2×F5) = C3×D10.3Q8 | central extension (φ=1) | 120 | | (C2xC6).56(C2xF5) | 480,286 |
(C2×C6).57(C2×F5) = C3×C23.2F5 | central extension (φ=1) | 240 | | (C2xC6).57(C2xF5) | 480,292 |
(C2×C6).58(C2×F5) = C6×D5⋊C8 | central extension (φ=1) | 240 | | (C2xC6).58(C2xF5) | 480,1047 |
(C2×C6).59(C2×F5) = C6×C4.F5 | central extension (φ=1) | 240 | | (C2xC6).59(C2xF5) | 480,1048 |
(C2×C6).60(C2×F5) = F5×C2×C12 | central extension (φ=1) | 120 | | (C2xC6).60(C2xF5) | 480,1050 |
(C2×C6).61(C2×F5) = C6×C4⋊F5 | central extension (φ=1) | 120 | | (C2xC6).61(C2xF5) | 480,1051 |
(C2×C6).62(C2×F5) = C2×C6×C5⋊C8 | central extension (φ=1) | 480 | | (C2xC6).62(C2xF5) | 480,1057 |
(C2×C6).63(C2×F5) = C6×C22.F5 | central extension (φ=1) | 240 | | (C2xC6).63(C2xF5) | 480,1058 |