Copied to
clipboard

G = M4(2).20D4order 128 = 27

1st non-split extension by M4(2) of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2).20D4, C42.378C23, C8.5(C2×D4), C4⋊C4.242D4, C8.2D46C2, (C2×C8).146D4, C4⋊Q1619C2, C22⋊C4.82D4, C2.22(Q8○D8), C4.14(C22×D4), C8.12D417C2, C4.43(C41D4), (C2×C8).561C23, (C2×C4).354C24, (C4×C8).176C22, (C22×Q16)⋊19C2, C23.456(C2×D4), C4⋊Q8.111C22, C82M4(2)⋊14C2, (C2×D4).120C23, (C2×D8).131C22, (C2×Q8).108C23, C8⋊C4.119C22, C22.20(C41D4), (C22×C8).273C22, (C2×Q16).127C22, (C2×SD16).21C22, C4.4D4.33C22, C22.614(C22×D4), (C22×C4).1044C23, (C22×Q8).312C22, C42⋊C2.327C22, C23.38C2313C2, (C2×M4(2)).274C22, (C2×C4○D8).19C2, (C2×C4).140(C2×D4), C2.33(C2×C41D4), (C2×C8.C22)⋊25C2, (C2×C4○D4).160C22, SmallGroup(128,1888)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — M4(2).20D4
C1C2C22C2×C4C22×C4C42⋊C2C82M4(2) — M4(2).20D4
C1C2C2×C4 — M4(2).20D4
C1C22C42⋊C2 — M4(2).20D4
C1C2C2C2×C4 — M4(2).20D4

Generators and relations for M4(2).20D4
 G = < a,b,c,d | a8=b2=1, c4=d2=a4, bab=a5, ac=ca, dad-1=a3, bc=cb, bd=db, dcd-1=a4c3 >

Subgroups: 492 in 266 conjugacy classes, 108 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4×C8, C8⋊C4, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×Q16, C2×Q16, C2×Q16, C4○D8, C8.C22, C22×Q8, C2×C4○D4, C82M4(2), C4⋊Q16, C8.12D4, C8.2D4, C23.38C23, C22×Q16, C2×C4○D8, C2×C8.C22, M4(2).20D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C41D4, C22×D4, C2×C41D4, Q8○D8, M4(2).20D4

Smallest permutation representation of M4(2).20D4
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 27)(2 32)(3 29)(4 26)(5 31)(6 28)(7 25)(8 30)(9 21)(10 18)(11 23)(12 20)(13 17)(14 22)(15 19)(16 24)(33 46)(34 43)(35 48)(36 45)(37 42)(38 47)(39 44)(40 41)(49 63)(50 60)(51 57)(52 62)(53 59)(54 64)(55 61)(56 58)
(1 20 59 42 5 24 63 46)(2 21 60 43 6 17 64 47)(3 22 61 44 7 18 57 48)(4 23 62 45 8 19 58 41)(9 50 34 28 13 54 38 32)(10 51 35 29 14 55 39 25)(11 52 36 30 15 56 40 26)(12 53 37 31 16 49 33 27)
(1 8 5 4)(2 3 6 7)(9 35 13 39)(10 38 14 34)(11 33 15 37)(12 36 16 40)(17 44 21 48)(18 47 22 43)(19 42 23 46)(20 45 24 41)(25 32 29 28)(26 27 30 31)(49 56 53 52)(50 51 54 55)(57 64 61 60)(58 59 62 63)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24)(33,46)(34,43)(35,48)(36,45)(37,42)(38,47)(39,44)(40,41)(49,63)(50,60)(51,57)(52,62)(53,59)(54,64)(55,61)(56,58), (1,20,59,42,5,24,63,46)(2,21,60,43,6,17,64,47)(3,22,61,44,7,18,57,48)(4,23,62,45,8,19,58,41)(9,50,34,28,13,54,38,32)(10,51,35,29,14,55,39,25)(11,52,36,30,15,56,40,26)(12,53,37,31,16,49,33,27), (1,8,5,4)(2,3,6,7)(9,35,13,39)(10,38,14,34)(11,33,15,37)(12,36,16,40)(17,44,21,48)(18,47,22,43)(19,42,23,46)(20,45,24,41)(25,32,29,28)(26,27,30,31)(49,56,53,52)(50,51,54,55)(57,64,61,60)(58,59,62,63)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24)(33,46)(34,43)(35,48)(36,45)(37,42)(38,47)(39,44)(40,41)(49,63)(50,60)(51,57)(52,62)(53,59)(54,64)(55,61)(56,58), (1,20,59,42,5,24,63,46)(2,21,60,43,6,17,64,47)(3,22,61,44,7,18,57,48)(4,23,62,45,8,19,58,41)(9,50,34,28,13,54,38,32)(10,51,35,29,14,55,39,25)(11,52,36,30,15,56,40,26)(12,53,37,31,16,49,33,27), (1,8,5,4)(2,3,6,7)(9,35,13,39)(10,38,14,34)(11,33,15,37)(12,36,16,40)(17,44,21,48)(18,47,22,43)(19,42,23,46)(20,45,24,41)(25,32,29,28)(26,27,30,31)(49,56,53,52)(50,51,54,55)(57,64,61,60)(58,59,62,63) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,27),(2,32),(3,29),(4,26),(5,31),(6,28),(7,25),(8,30),(9,21),(10,18),(11,23),(12,20),(13,17),(14,22),(15,19),(16,24),(33,46),(34,43),(35,48),(36,45),(37,42),(38,47),(39,44),(40,41),(49,63),(50,60),(51,57),(52,62),(53,59),(54,64),(55,61),(56,58)], [(1,20,59,42,5,24,63,46),(2,21,60,43,6,17,64,47),(3,22,61,44,7,18,57,48),(4,23,62,45,8,19,58,41),(9,50,34,28,13,54,38,32),(10,51,35,29,14,55,39,25),(11,52,36,30,15,56,40,26),(12,53,37,31,16,49,33,27)], [(1,8,5,4),(2,3,6,7),(9,35,13,39),(10,38,14,34),(11,33,15,37),(12,36,16,40),(17,44,21,48),(18,47,22,43),(19,42,23,46),(20,45,24,41),(25,32,29,28),(26,27,30,31),(49,56,53,52),(50,51,54,55),(57,64,61,60),(58,59,62,63)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I···4N8A8B8C8D8E···8J
order12222222444444444···488888···8
size11112288222244448···822224···4

32 irreducible representations

dim11111111122224
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2D4D4D4D4Q8○D8
kernelM4(2).20D4C82M4(2)C4⋊Q16C8.12D4C8.2D4C23.38C23C22×Q16C2×C4○D8C2×C8.C22C22⋊C4C4⋊C4C2×C8M4(2)C2
# reps11224211222444

Matrix representation of M4(2).20D4 in GL6(𝔽17)

1600000
0160000
005500
0012500
00001212
0000512
,
100000
010000
0000160
0000016
0016000
0001600
,
0160000
100000
0031400
003300
0000314
000033
,
100000
0160000
00121200
0012500
00001212
0000125

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,5,12,0,0,0,0,5,5,0,0,0,0,0,0,12,5,0,0,0,0,12,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0,16,0,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,3,3,0,0,0,0,14,3,0,0,0,0,0,0,3,3,0,0,0,0,14,3],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,12,12,0,0,0,0,12,5,0,0,0,0,0,0,12,12,0,0,0,0,12,5] >;

M4(2).20D4 in GAP, Magma, Sage, TeX

M_4(2)._{20}D_4
% in TeX

G:=Group("M4(2).20D4");
// GroupNames label

G:=SmallGroup(128,1888);
// by ID

G=gap.SmallGroup(128,1888);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,568,758,184,521,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=1,c^4=d^2=a^4,b*a*b=a^5,a*c=c*a,d*a*d^-1=a^3,b*c=c*b,b*d=d*b,d*c*d^-1=a^4*c^3>;
// generators/relations

׿
×
𝔽