Copied to
clipboard

G = Q16.10D4order 128 = 27

3rd non-split extension by Q16 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: D8.2D4, D4.8D8, Q8.8D8, Q16.10D4, M4(2).16D4, M5(2)⋊3C22, D4○D81C2, (C2×D16)⋊3C2, D4.C81C2, C4○D4.9D4, C4.37(C2×D8), C8.66(C2×D4), C16⋊C222C2, (C2×C16)⋊2C22, C4.24C22≀C2, M5(2)⋊C21C2, D8.C41C2, D4.4D41C2, (C2×D8)⋊12C22, C8○D4.1C22, C4○D8.5C22, C8.C41C22, (C2×C8).231C23, C2.32(C22⋊D8), C22.4(C8⋊C22), (C2×C4).39(C2×D4), SmallGroup(128,924)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — Q16.10D4
C1C2C4C2×C4C2×C8C8○D4D4○D8 — Q16.10D4
C1C2C4C2×C8 — Q16.10D4
C1C2C2×C4C8○D4 — Q16.10D4
C1C2C2C2C2C4C4C2×C8 — Q16.10D4

Generators and relations for Q16.10D4
 G = < a,b,c,d | a8=d2=1, b2=c4=a4, bab-1=cac-1=dad=a-1, cbc-1=a-1b, dbd=a3b, dcd=a4c3 >

Subgroups: 336 in 110 conjugacy classes, 32 normal (30 characteristic)
C1, C2, C2 [×6], C4 [×2], C4 [×2], C22, C22 [×9], C8 [×2], C8 [×2], C2×C4, C2×C4 [×4], D4, D4 [×12], Q8, Q8, C23 [×4], C16 [×2], C2×C8, C2×C8, M4(2), M4(2) [×2], D8, D8 [×2], D8 [×6], SD16 [×4], Q16, C2×D4 [×7], C4○D4, C4○D4 [×4], C4.D4, C8.C4, C2×C16, M5(2), D16 [×3], SD32, C8○D4, C2×D8 [×2], C2×D8, C4○D8, C4○D8, C8⋊C22 [×4], 2+ 1+4, D4.C8, D8.C4, M5(2)⋊C2, D4.4D4, C2×D16, C16⋊C22, D4○D8, Q16.10D4
Quotients: C1, C2 [×7], C22 [×7], D4 [×6], C23, D8 [×2], C2×D4 [×3], C22≀C2, C2×D8, C8⋊C22, C22⋊D8, Q16.10D4

Character table of Q16.10D4

 class 12A2B2C2D2E2F2G4A4B4C4D8A8B8C8D8E16A16B16C16D16E16F
 size 1124888162248224816444488
ρ111111111111111111111111    trivial
ρ2111-1-111111-1-1111-1-11111-1-1    linear of order 2
ρ3111-11-1-1-111-11111-111111-1-1    linear of order 2
ρ41111-1-1-1-1111-11111-1111111    linear of order 2
ρ5111-1-111-111-1-1111-11-1-1-1-111    linear of order 2
ρ61111111-111111111-1-1-1-1-1-1-1    linear of order 2
ρ71111-1-1-11111-111111-1-1-1-1-1-1    linear of order 2
ρ8111-11-1-1111-11111-1-1-1-1-1-111    linear of order 2
ρ922-200-2202-200-2-2200000000    orthogonal lifted from D4
ρ1022-2020002-20-222-200000000    orthogonal lifted from D4
ρ1122-2002-202-200-2-2200000000    orthogonal lifted from D4
ρ1222-20-20002-20222-200000000    orthogonal lifted from D4
ρ13222-2000022-20-2-2-220000000    orthogonal lifted from D4
ρ14222200002220-2-2-2-20000000    orthogonal lifted from D4
ρ1522-220000-22-20000002-22-2-22    orthogonal lifted from D8
ρ1622-2-20000-222000000-22-22-22    orthogonal lifted from D8
ρ1722-220000-22-2000000-22-222-2    orthogonal lifted from D8
ρ1822-2-20000-2220000002-22-22-2    orthogonal lifted from D8
ρ1944400000-4-40000000000000    orthogonal lifted from C8⋊C22
ρ204-40000000000-222200016716516316ζ1615169165163ζ16716516316161516916516300    orthogonal faithful
ρ214-40000000000-2222000ζ16716516316161516916516316716516316ζ161516916516300    orthogonal faithful
ρ224-4000000000022-22000161516916516316716516316ζ1615169165163ζ1671651631600    orthogonal faithful
ρ234-4000000000022-22000ζ1615169165163ζ1671651631616151691651631671651631600    orthogonal faithful

Smallest permutation representation of Q16.10D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 21 5 17)(2 20 6 24)(3 19 7 23)(4 18 8 22)(9 26 13 30)(10 25 14 29)(11 32 15 28)(12 31 16 27)
(1 12 17 28 5 16 21 32)(2 11 18 27 6 15 22 31)(3 10 19 26 7 14 23 30)(4 9 20 25 8 13 24 29)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 27)(7 26)(8 25)(9 24)(10 23)(11 22)(12 21)(13 20)(14 19)(15 18)(16 17)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,26,13,30)(10,25,14,29)(11,32,15,28)(12,31,16,27), (1,12,17,28,5,16,21,32)(2,11,18,27,6,15,22,31)(3,10,19,26,7,14,23,30)(4,9,20,25,8,13,24,29), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,26,13,30)(10,25,14,29)(11,32,15,28)(12,31,16,27), (1,12,17,28,5,16,21,32)(2,11,18,27,6,15,22,31)(3,10,19,26,7,14,23,30)(4,9,20,25,8,13,24,29), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17) );

G=PermutationGroup([(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,21,5,17),(2,20,6,24),(3,19,7,23),(4,18,8,22),(9,26,13,30),(10,25,14,29),(11,32,15,28),(12,31,16,27)], [(1,12,17,28,5,16,21,32),(2,11,18,27,6,15,22,31),(3,10,19,26,7,14,23,30),(4,9,20,25,8,13,24,29)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,27),(7,26),(8,25),(9,24),(10,23),(11,22),(12,21),(13,20),(14,19),(15,18),(16,17)])

Matrix representation of Q16.10D4 in GL4(𝔽17) generated by

14300
141400
143011
140311
,
0010
116162
16000
016161
,
13042
601110
1121315
41378
,
13042
601110
61542
6400
G:=sub<GL(4,GF(17))| [14,14,14,14,3,14,3,0,0,0,0,3,0,0,11,11],[0,1,16,0,0,16,0,16,1,16,0,16,0,2,0,1],[13,6,11,4,0,0,2,13,4,11,13,7,2,10,15,8],[13,6,6,6,0,0,15,4,4,11,4,0,2,10,2,0] >;

Q16.10D4 in GAP, Magma, Sage, TeX

Q_{16}._{10}D_4
% in TeX

G:=Group("Q16.10D4");
// GroupNames label

G:=SmallGroup(128,924);
// by ID

G=gap.SmallGroup(128,924);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,422,1123,570,360,2804,718,172,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=d^2=1,b^2=c^4=a^4,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a^3*b,d*c*d=a^4*c^3>;
// generators/relations

Export

Character table of Q16.10D4 in TeX

׿
×
𝔽