p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8.2D4, D4.8D8, Q8.8D8, Q16.10D4, M4(2).16D4, M5(2)⋊3C22, D4○D8⋊1C2, (C2×D16)⋊3C2, D4.C8⋊1C2, C4○D4.9D4, C4.37(C2×D8), C8.66(C2×D4), C16⋊C22⋊2C2, (C2×C16)⋊2C22, C4.24C22≀C2, M5(2)⋊C2⋊1C2, D8.C4⋊1C2, D4.4D4⋊1C2, (C2×D8)⋊12C22, C8○D4.1C22, C4○D8.5C22, C8.C4⋊1C22, (C2×C8).231C23, C2.32(C22⋊D8), C22.4(C8⋊C22), (C2×C4).39(C2×D4), SmallGroup(128,924)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q16.10D4
G = < a,b,c,d | a8=d2=1, b2=c4=a4, bab-1=cac-1=dad=a-1, cbc-1=a-1b, dbd=a3b, dcd=a4c3 >
Subgroups: 336 in 110 conjugacy classes, 32 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C16, C2×C8, C2×C8, M4(2), M4(2), D8, D8, D8, SD16, Q16, C2×D4, C4○D4, C4○D4, C4.D4, C8.C4, C2×C16, M5(2), D16, SD32, C8○D4, C2×D8, C2×D8, C4○D8, C4○D8, C8⋊C22, 2+ 1+4, D4.C8, D8.C4, M5(2)⋊C2, D4.4D4, C2×D16, C16⋊C22, D4○D8, Q16.10D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, Q16.10D4
Character table of Q16.10D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 16A | 16B | 16C | 16D | 16E | 16F | |
size | 1 | 1 | 2 | 4 | 8 | 8 | 8 | 16 | 2 | 2 | 4 | 8 | 2 | 2 | 4 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ19 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | -ζ167+ζ165-ζ163+ζ16 | ζ1615-ζ169-ζ165+ζ163 | ζ167-ζ165+ζ163-ζ16 | -ζ1615+ζ169+ζ165-ζ163 | 0 | 0 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | ζ167-ζ165+ζ163-ζ16 | -ζ1615+ζ169+ζ165-ζ163 | -ζ167+ζ165-ζ163+ζ16 | ζ1615-ζ169-ζ165+ζ163 | 0 | 0 | orthogonal faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | -ζ1615+ζ169+ζ165-ζ163 | -ζ167+ζ165-ζ163+ζ16 | ζ1615-ζ169-ζ165+ζ163 | ζ167-ζ165+ζ163-ζ16 | 0 | 0 | orthogonal faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | ζ1615-ζ169-ζ165+ζ163 | ζ167-ζ165+ζ163-ζ16 | -ζ1615+ζ169+ζ165-ζ163 | -ζ167+ζ165-ζ163+ζ16 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 21 5 17)(2 20 6 24)(3 19 7 23)(4 18 8 22)(9 26 13 30)(10 25 14 29)(11 32 15 28)(12 31 16 27)
(1 12 17 28 5 16 21 32)(2 11 18 27 6 15 22 31)(3 10 19 26 7 14 23 30)(4 9 20 25 8 13 24 29)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 27)(7 26)(8 25)(9 24)(10 23)(11 22)(12 21)(13 20)(14 19)(15 18)(16 17)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,26,13,30)(10,25,14,29)(11,32,15,28)(12,31,16,27), (1,12,17,28,5,16,21,32)(2,11,18,27,6,15,22,31)(3,10,19,26,7,14,23,30)(4,9,20,25,8,13,24,29), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,26,13,30)(10,25,14,29)(11,32,15,28)(12,31,16,27), (1,12,17,28,5,16,21,32)(2,11,18,27,6,15,22,31)(3,10,19,26,7,14,23,30)(4,9,20,25,8,13,24,29), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,21,5,17),(2,20,6,24),(3,19,7,23),(4,18,8,22),(9,26,13,30),(10,25,14,29),(11,32,15,28),(12,31,16,27)], [(1,12,17,28,5,16,21,32),(2,11,18,27,6,15,22,31),(3,10,19,26,7,14,23,30),(4,9,20,25,8,13,24,29)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,27),(7,26),(8,25),(9,24),(10,23),(11,22),(12,21),(13,20),(14,19),(15,18),(16,17)]])
Matrix representation of Q16.10D4 ►in GL4(𝔽17) generated by
14 | 3 | 0 | 0 |
14 | 14 | 0 | 0 |
14 | 3 | 0 | 11 |
14 | 0 | 3 | 11 |
0 | 0 | 1 | 0 |
1 | 16 | 16 | 2 |
16 | 0 | 0 | 0 |
0 | 16 | 16 | 1 |
13 | 0 | 4 | 2 |
6 | 0 | 11 | 10 |
11 | 2 | 13 | 15 |
4 | 13 | 7 | 8 |
13 | 0 | 4 | 2 |
6 | 0 | 11 | 10 |
6 | 15 | 4 | 2 |
6 | 4 | 0 | 0 |
G:=sub<GL(4,GF(17))| [14,14,14,14,3,14,3,0,0,0,0,3,0,0,11,11],[0,1,16,0,0,16,0,16,1,16,0,16,0,2,0,1],[13,6,11,4,0,0,2,13,4,11,13,7,2,10,15,8],[13,6,6,6,0,0,15,4,4,11,4,0,2,10,2,0] >;
Q16.10D4 in GAP, Magma, Sage, TeX
Q_{16}._{10}D_4
% in TeX
G:=Group("Q16.10D4");
// GroupNames label
G:=SmallGroup(128,924);
// by ID
G=gap.SmallGroup(128,924);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,422,1123,570,360,2804,718,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=d^2=1,b^2=c^4=a^4,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a^3*b,d*c*d=a^4*c^3>;
// generators/relations
Export