Direct product G=NxQ with N=C8 and Q=D4
Semidirect products G=N:Q with N=C8 and Q=D4
Non-split extensions G=N.Q with N=C8 and Q=D4
extension | φ:Q→Aut N | d | ρ | Label | ID |
C8.1D4 = C8.D4 | φ: D4/C2 → C22 ⊆ Aut C8 | 32 | | C8.1D4 | 64,151 |
C8.2D4 = C8.2D4 | φ: D4/C2 → C22 ⊆ Aut C8 | 32 | | C8.2D4 | 64,178 |
C8.3D4 = C16:C22 | φ: D4/C2 → C22 ⊆ Aut C8 | 16 | 4+ | C8.3D4 | 64,190 |
C8.4D4 = Q32:C2 | φ: D4/C2 → C22 ⊆ Aut C8 | 32 | 4- | C8.4D4 | 64,191 |
C8.5D4 = D32 | φ: D4/C4 → C2 ⊆ Aut C8 | 32 | 2+ | C8.5D4 | 64,52 |
C8.6D4 = SD64 | φ: D4/C4 → C2 ⊆ Aut C8 | 32 | 2 | C8.6D4 | 64,53 |
C8.7D4 = Q64 | φ: D4/C4 → C2 ⊆ Aut C8 | 64 | 2- | C8.7D4 | 64,54 |
C8.8D4 = C4:Q16 | φ: D4/C4 → C2 ⊆ Aut C8 | 64 | | C8.8D4 | 64,175 |
C8.9D4 = C2xD16 | φ: D4/C4 → C2 ⊆ Aut C8 | 32 | | C8.9D4 | 64,186 |
C8.10D4 = C2xSD32 | φ: D4/C4 → C2 ⊆ Aut C8 | 32 | | C8.10D4 | 64,187 |
C8.11D4 = C2xQ32 | φ: D4/C4 → C2 ⊆ Aut C8 | 64 | | C8.11D4 | 64,188 |
C8.12D4 = C8.12D4 | φ: D4/C4 → C2 ⊆ Aut C8 | 32 | | C8.12D4 | 64,176 |
C8.13D4 = C4oD16 | φ: D4/C4 → C2 ⊆ Aut C8 | 32 | 2 | C8.13D4 | 64,189 |
C8.14D4 = C2.D16 | φ: D4/C22 → C2 ⊆ Aut C8 | 32 | | C8.14D4 | 64,38 |
C8.15D4 = C2.Q32 | φ: D4/C22 → C2 ⊆ Aut C8 | 64 | | C8.15D4 | 64,39 |
C8.16D4 = M5(2):C2 | φ: D4/C22 → C2 ⊆ Aut C8 | 16 | 4+ | C8.16D4 | 64,42 |
C8.17D4 = C8.17D4 | φ: D4/C22 → C2 ⊆ Aut C8 | 32 | 4- | C8.17D4 | 64,43 |
C8.18D4 = C8.18D4 | φ: D4/C22 → C2 ⊆ Aut C8 | 32 | | C8.18D4 | 64,148 |
C8.19D4 = D4.4D4 | φ: D4/C22 → C2 ⊆ Aut C8 | 16 | 4+ | C8.19D4 | 64,153 |
C8.20D4 = D4.5D4 | φ: D4/C22 → C2 ⊆ Aut C8 | 32 | 4- | C8.20D4 | 64,154 |
C8.21D4 = D8.C4 | φ: D4/C22 → C2 ⊆ Aut C8 | 32 | 2 | C8.21D4 | 64,40 |
C8.22D4 = D8:2C4 | φ: D4/C22 → C2 ⊆ Aut C8 | 16 | 4 | C8.22D4 | 64,41 |
C8.23D4 = D4.3D4 | φ: D4/C22 → C2 ⊆ Aut C8 | 16 | 4 | C8.23D4 | 64,152 |
C8.24D4 = C23.C8 | φ: D4/C22 → C2 ⊆ Aut C8 | 16 | 4 | C8.24D4 | 64,30 |
C8.25D4 = D4.C8 | φ: D4/C22 → C2 ⊆ Aut C8 | 32 | 2 | C8.25D4 | 64,31 |
C8.26D4 = C8.26D4 | φ: D4/C22 → C2 ⊆ Aut C8 | 16 | 4 | C8.26D4 | 64,125 |
C8.27D4 = C22:C16 | central extension (φ=1) | 32 | | C8.27D4 | 64,29 |
C8.28D4 = C4:C16 | central extension (φ=1) | 64 | | C8.28D4 | 64,44 |
C8.29D4 = C8.C8 | central extension (φ=1) | 16 | 2 | C8.29D4 | 64,45 |
C8.30D4 = C8oD8 | central extension (φ=1) | 16 | 2 | C8.30D4 | 64,124 |
x
:
Z
F
o
wr
Q
<