p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8.1C4, C8.21D4, C4.18D8, Q16.1C4, C22.1SD16, (C2×C16)⋊4C2, C8.9(C2×C4), C4○D8.1C2, (C2×C4).62D4, C8.C4⋊1C2, C4.3(C22⋊C4), (C2×C8).86C22, C2.8(D4⋊C4), SmallGroup(64,40)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8.C4
G = < a,b,c | a8=b2=1, c4=a4, bab=cac-1=a-1, cbc-1=a5b >
Character table of D8.C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 2 | 8 | 1 | 1 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 0 | -2 | -2 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ15 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | ζ1615+ζ165 | ζ1615+ζ1613 | ζ1611+ζ16 | ζ163+ζ16 | ζ1613+ζ167 | ζ1611+ζ169 | ζ169+ζ163 | ζ167+ζ165 | complex faithful |
ρ16 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | ζ1611+ζ169 | ζ1611+ζ16 | ζ167+ζ165 | ζ1615+ζ165 | ζ163+ζ16 | ζ1613+ζ167 | ζ1615+ζ1613 | ζ169+ζ163 | complex faithful |
ρ17 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | ζ1613+ζ167 | ζ167+ζ165 | ζ169+ζ163 | ζ1611+ζ169 | ζ1615+ζ165 | ζ163+ζ16 | ζ1611+ζ16 | ζ1615+ζ1613 | complex faithful |
ρ18 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | ζ1611+ζ16 | ζ163+ζ16 | ζ1615+ζ165 | ζ1615+ζ1613 | ζ169+ζ163 | ζ167+ζ165 | ζ1613+ζ167 | ζ1611+ζ169 | complex faithful |
ρ19 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | ζ169+ζ163 | ζ1611+ζ169 | ζ1613+ζ167 | ζ167+ζ165 | ζ1611+ζ16 | ζ1615+ζ1613 | ζ1615+ζ165 | ζ163+ζ16 | complex faithful |
ρ20 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | ζ163+ζ16 | ζ169+ζ163 | ζ1615+ζ1613 | ζ1613+ζ167 | ζ1611+ζ169 | ζ1615+ζ165 | ζ167+ζ165 | ζ1611+ζ16 | complex faithful |
ρ21 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | ζ167+ζ165 | ζ1615+ζ165 | ζ1611+ζ169 | ζ1611+ζ16 | ζ1615+ζ1613 | ζ169+ζ163 | ζ163+ζ16 | ζ1613+ζ167 | complex faithful |
ρ22 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | ζ1615+ζ1613 | ζ1613+ζ167 | ζ163+ζ16 | ζ169+ζ163 | ζ167+ζ165 | ζ1611+ζ16 | ζ1611+ζ169 | ζ1615+ζ165 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 8)(2 7)(3 6)(4 5)(9 13)(10 12)(14 16)(17 24)(18 23)(19 22)(20 21)(25 29)(26 28)(30 32)
(1 12 21 32 5 16 17 28)(2 11 22 31 6 15 18 27)(3 10 23 30 7 14 19 26)(4 9 24 29 8 13 20 25)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,16)(17,24)(18,23)(19,22)(20,21)(25,29)(26,28)(30,32), (1,12,21,32,5,16,17,28)(2,11,22,31,6,15,18,27)(3,10,23,30,7,14,19,26)(4,9,24,29,8,13,20,25)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,16)(17,24)(18,23)(19,22)(20,21)(25,29)(26,28)(30,32), (1,12,21,32,5,16,17,28)(2,11,22,31,6,15,18,27)(3,10,23,30,7,14,19,26)(4,9,24,29,8,13,20,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,8),(2,7),(3,6),(4,5),(9,13),(10,12),(14,16),(17,24),(18,23),(19,22),(20,21),(25,29),(26,28),(30,32)], [(1,12,21,32,5,16,17,28),(2,11,22,31,6,15,18,27),(3,10,23,30,7,14,19,26),(4,9,24,29,8,13,20,25)]])
D8.C4 is a maximal subgroup of
C23.20SD16 Q16.10D4 Q16.D4 D8.3D4 D8.12D4 D8.F5 Q16.F5
C4p.D8: C8○D16 D16⋊5C4 Dic12.C4 D24.1C4 C24.41D4 D40.5C4 D40.3C4 C20.58D8 ...
D8.C4 is a maximal quotient of
C4.16D16 Q16⋊1C8 C23.12SD16 C23.13SD16 C8.16Q16 C8.9C42 D8.F5 Q16.F5
C4p.D8: C8.30D8 Dic12.C4 D24.1C4 C24.41D4 D40.5C4 D40.3C4 C20.58D8 Dic28.C4 ...
Matrix representation of D8.C4 ►in GL2(𝔽17) generated by
14 | 3 |
14 | 14 |
14 | 3 |
3 | 3 |
15 | 14 |
14 | 2 |
G:=sub<GL(2,GF(17))| [14,14,3,14],[14,3,3,3],[15,14,14,2] >;
D8.C4 in GAP, Magma, Sage, TeX
D_8.C_4
% in TeX
G:=Group("D8.C4");
// GroupNames label
G:=SmallGroup(64,40);
// by ID
G=gap.SmallGroup(64,40);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,362,188,230,117,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^8=b^2=1,c^4=a^4,b*a*b=c*a*c^-1=a^-1,c*b*c^-1=a^5*b>;
// generators/relations
Export
Subgroup lattice of D8.C4 in TeX
Character table of D8.C4 in TeX