p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C8⋊3D4, C42.31C22, (C2×D8)⋊9C2, C8⋊C4⋊4C2, C4.5(C2×D4), C4⋊1D4⋊4C2, (C2×C4).44D4, (C2×SD16)⋊3C2, C4.4D4⋊5C2, C2.9(C4⋊1D4), (C2×C8).20C22, C2.22(C8⋊C22), (C2×C4).121C23, (C2×D4).31C22, C22.117(C2×D4), (C2×Q8).27C22, SmallGroup(64,177)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊3D4
G = < a,b,c | a8=b4=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >
Subgroups: 161 in 72 conjugacy classes, 29 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C22⋊C4, C2×C8, D8, SD16, C2×D4, C2×D4, C2×D4, C2×Q8, C8⋊C4, C4.4D4, C4⋊1D4, C2×D8, C2×SD16, C8⋊3D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4⋊1D4, C8⋊C22, C8⋊3D4
Character table of C8⋊3D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 2 | 2 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | orthogonal lifted from D4 |
ρ15 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ16 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 21 31 16)(2 18 32 13)(3 23 25 10)(4 20 26 15)(5 17 27 12)(6 22 28 9)(7 19 29 14)(8 24 30 11)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 32)(9 15)(10 14)(11 13)(18 24)(19 23)(20 22)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,31,16)(2,18,32,13)(3,23,25,10)(4,20,26,15)(5,17,27,12)(6,22,28,9)(7,19,29,14)(8,24,30,11), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,32)(9,15)(10,14)(11,13)(18,24)(19,23)(20,22)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,31,16)(2,18,32,13)(3,23,25,10)(4,20,26,15)(5,17,27,12)(6,22,28,9)(7,19,29,14)(8,24,30,11), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,32)(9,15)(10,14)(11,13)(18,24)(19,23)(20,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,21,31,16),(2,18,32,13),(3,23,25,10),(4,20,26,15),(5,17,27,12),(6,22,28,9),(7,19,29,14),(8,24,30,11)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,32),(9,15),(10,14),(11,13),(18,24),(19,23),(20,22)]])
C8⋊3D4 is a maximal subgroup of
C42.531C23
C42.D2p: C42.247D4 M4(2)⋊7D4 M4(2)⋊9D4 C42.255D4 C42.257D4 C42.271D4 C42.272D4 C42.275D4 ...
(C2p×D8)⋊C2: C42.391C23 C42.72C23 C42.533C23 C24⋊11D4 C40⋊11D4 C56⋊11D4 ...
C8⋊pD4⋊C2: C42.C23 C42.2C23 M4(2)⋊10D4 M4(2)⋊11D4 C42.406C23 C42.407C23 C42.410C23 D8⋊9D4 ...
(C2×D4).D2p: C8⋊C4⋊C4 C42.3C23 C24⋊9D4 C40⋊9D4 C56⋊9D4 ...
C8⋊3D4 is a maximal quotient of
(C2×C4)⋊2D8 (C2×C8)⋊20D4
C8⋊D4p: C8⋊3D8 C8⋊D12 C8⋊D20 C8⋊D28 ...
C42.D2p: C42.110D4 C42.112D4 C42.64D6 C42.74D6 C42.64D10 C42.74D10 C42.64D14 C42.74D14 ...
(C2×C8).D2p: C8⋊5SD16 C8⋊6SD16 C42.664C23 C42.666C23 C42.667C23 C8⋊3Q16 C42.26Q8 (C2×D8)⋊10C4 ...
Matrix representation of C8⋊3D4 ►in GL6(𝔽17)
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 4 | 4 |
0 | 0 | 12 | 5 | 13 | 4 |
0 | 0 | 13 | 13 | 12 | 12 |
0 | 0 | 4 | 13 | 5 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,5,12,13,4,0,0,5,5,13,13,0,0,4,13,12,5,0,0,4,4,12,12],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;
C8⋊3D4 in GAP, Magma, Sage, TeX
C_8\rtimes_3D_4
% in TeX
G:=Group("C8:3D4");
// GroupNames label
G:=SmallGroup(64,177);
// by ID
G=gap.SmallGroup(64,177);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,55,362,332,86,963,117]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export