Copied to
clipboard

G = (C2xC4).SD16order 128 = 27

7th non-split extension by C2xC4 of SD16 acting via SD16/C2=D4

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4:C4.14D4, (C2xQ8).17D4, (C2xC4).7SD16, (C22xC4).51D4, C2.9(Q8:D4), C23.528(C2xD4), (C22xC4).17C23, C22.15(C2xSD16), C22:Q8.11C22, C22.138C22wrC2, C22:C8.116C22, C23.31D4.4C2, C23.47D4.4C2, C2.8(C23.7D4), C2.11(D4.10D4), C22.32(C8.C22), C2.C42.24C22, C23.81C23.2C2, C23.41C23.2C2, C22.M4(2).9C2, (C2xC4).206(C2xD4), (C2xC4:C4).22C22, SmallGroup(128,343)

Series: Derived Chief Lower central Upper central Jennings

C1C22xC4 — (C2xC4).SD16
C1C2C22C23C22xC4C2xC4:C4C23.41C23 — (C2xC4).SD16
C1C22C22xC4 — (C2xC4).SD16
C1C22C22xC4 — (C2xC4).SD16
C1C2C22C22xC4 — (C2xC4).SD16

Generators and relations for (C2xC4).SD16
 G = < a,b,c,d | a2=b4=c8=1, d2=b2, dbd-1=ab=ba, cac-1=ab2, ad=da, cbc-1=ab-1, dcd-1=b2c3 >

Subgroups: 228 in 105 conjugacy classes, 34 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2xC4, C2xC4, Q8, C23, C42, C22:C4, C4:C4, C4:C4, C2xC8, C22xC4, C22xC4, C2xQ8, C2xQ8, C2.C42, C2.C42, C22:C8, Q8:C4, C4.Q8, C2xC4:C4, C2xC4:C4, C42:C2, C22:Q8, C22:Q8, C42.C2, C4:Q8, C22.M4(2), C23.31D4, C23.81C23, C23.47D4, C23.41C23, (C2xC4).SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2xD4, C22wrC2, C2xSD16, C8.C22, Q8:D4, D4.10D4, C23.7D4, (C2xC4).SD16

Character table of (C2xC4).SD16

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M8A8B8C8D
 size 11112244448888888888888
ρ111111111111111111111111    trivial
ρ2111111-1-111-11-11-11-11-1-11-11    linear of order 2
ρ311111111111-1-1-1-11111-1-1-1-1    linear of order 2
ρ4111111-1-111-1-11-111-11-11-11-1    linear of order 2
ρ51111111111-11111-11-1-1-1-1-1-1    linear of order 2
ρ6111111-1-11111-11-1-1-1-111-11-1    linear of order 2
ρ71111111111-1-1-1-1-1-11-1-11111    linear of order 2
ρ8111111-1-1111-11-11-1-1-11-11-11    linear of order 2
ρ92222-2-200-2200-20200000000    orthogonal lifted from D4
ρ1022222222-2-2000000-2000000    orthogonal lifted from D4
ρ112222-2-2002-2020-2000000000    orthogonal lifted from D4
ρ122222-2-2002-20-202000000000    orthogonal lifted from D4
ρ13222222-2-2-2-20000002000000    orthogonal lifted from D4
ρ142222-2-200-220020-200000000    orthogonal lifted from D4
ρ1522-2-2-222-200000000000-2-2--2--2    complex lifted from SD16
ρ1622-2-2-22-2200000000000--2-2-2--2    complex lifted from SD16
ρ1722-2-2-222-200000000000--2--2-2-2    complex lifted from SD16
ρ1822-2-2-22-2200000000000-2--2--2-2    complex lifted from SD16
ρ194-4-4400000020000000-20000    symplectic lifted from D4.10D4, Schur index 2
ρ2044-4-44-400000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ214-4-44000000-2000000020000    symplectic lifted from D4.10D4, Schur index 2
ρ224-44-4000000000002i0-2i00000    complex lifted from C23.7D4
ρ234-44-400000000000-2i02i00000    complex lifted from C23.7D4

Smallest permutation representation of (C2xC4).SD16
On 32 points
Generators in S32
(2 28)(4 30)(6 32)(8 26)(10 20)(12 22)(14 24)(16 18)
(1 13 27 23)(2 24 28 14)(3 17 29 15)(4 16 30 18)(5 9 31 19)(6 20 32 10)(7 21 25 11)(8 12 26 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 23 27 13)(2 16 28 18)(3 21 29 11)(4 14 30 24)(5 19 31 9)(6 12 32 22)(7 17 25 15)(8 10 26 20)

G:=sub<Sym(32)| (2,28)(4,30)(6,32)(8,26)(10,20)(12,22)(14,24)(16,18), (1,13,27,23)(2,24,28,14)(3,17,29,15)(4,16,30,18)(5,9,31,19)(6,20,32,10)(7,21,25,11)(8,12,26,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23,27,13)(2,16,28,18)(3,21,29,11)(4,14,30,24)(5,19,31,9)(6,12,32,22)(7,17,25,15)(8,10,26,20)>;

G:=Group( (2,28)(4,30)(6,32)(8,26)(10,20)(12,22)(14,24)(16,18), (1,13,27,23)(2,24,28,14)(3,17,29,15)(4,16,30,18)(5,9,31,19)(6,20,32,10)(7,21,25,11)(8,12,26,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23,27,13)(2,16,28,18)(3,21,29,11)(4,14,30,24)(5,19,31,9)(6,12,32,22)(7,17,25,15)(8,10,26,20) );

G=PermutationGroup([[(2,28),(4,30),(6,32),(8,26),(10,20),(12,22),(14,24),(16,18)], [(1,13,27,23),(2,24,28,14),(3,17,29,15),(4,16,30,18),(5,9,31,19),(6,20,32,10),(7,21,25,11),(8,12,26,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,23,27,13),(2,16,28,18),(3,21,29,11),(4,14,30,24),(5,19,31,9),(6,12,32,22),(7,17,25,15),(8,10,26,20)]])

Matrix representation of (C2xC4).SD16 in GL6(F17)

100000
010000
001000
000100
0000160
001616016
,
100000
010000
0071600
00161000
001182
00100109
,
550000
1250000
001616915
001010113
001700
000178
,
100000
0160000
0010100
001700
0077614
00010111

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,16,0,0,0,1,0,16,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,16,1,10,0,0,16,10,1,0,0,0,0,0,8,10,0,0,0,0,2,9],[5,12,0,0,0,0,5,5,0,0,0,0,0,0,16,10,1,0,0,0,16,10,7,1,0,0,9,11,0,7,0,0,15,3,0,8],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,10,1,7,0,0,0,1,7,7,10,0,0,0,0,6,1,0,0,0,0,14,11] >;

(C2xC4).SD16 in GAP, Magma, Sage, TeX

(C_2\times C_4).{\rm SD}_{16}
% in TeX

G:=Group("(C2xC4).SD16");
// GroupNames label

G:=SmallGroup(128,343);
// by ID

G=gap.SmallGroup(128,343);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,232,422,352,1123,570,521,136,1411]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=b^2,d*b*d^-1=a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,c*b*c^-1=a*b^-1,d*c*d^-1=b^2*c^3>;
// generators/relations

Export

Character table of (C2xC4).SD16 in TeX

׿
x
:
Z
F
o
wr
Q
<