extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8⋊C4)⋊1C2 = C24.155D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):1C2 | 128,519 |
(C2×Q8⋊C4)⋊2C2 = C24.65D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):2C2 | 128,520 |
(C2×Q8⋊C4)⋊3C2 = C24.160D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):3C2 | 128,604 |
(C2×Q8⋊C4)⋊4C2 = C24.73D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):4C2 | 128,605 |
(C2×Q8⋊C4)⋊5C2 = (C2×SD16)⋊14C4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):5C2 | 128,609 |
(C2×Q8⋊C4)⋊6C2 = (C2×SD16)⋊15C4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):6C2 | 128,612 |
(C2×Q8⋊C4)⋊7C2 = C24.135D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):7C2 | 128,624 |
(C2×Q8⋊C4)⋊8C2 = C42.433D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):8C2 | 128,690 |
(C2×Q8⋊C4)⋊9C2 = (C2×C4)⋊9SD16 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):9C2 | 128,700 |
(C2×Q8⋊C4)⋊10C2 = C42.119D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):10C2 | 128,715 |
(C2×Q8⋊C4)⋊11C2 = C23⋊3SD16 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):11C2 | 128,732 |
(C2×Q8⋊C4)⋊12C2 = C23⋊2Q16 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):12C2 | 128,733 |
(C2×Q8⋊C4)⋊13C2 = C24.85D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):13C2 | 128,767 |
(C2×Q8⋊C4)⋊14C2 = C24.86D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):14C2 | 128,768 |
(C2×Q8⋊C4)⋊15C2 = C4⋊C4.94D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):15C2 | 128,774 |
(C2×Q8⋊C4)⋊16C2 = (C2×C4)⋊5SD16 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):16C2 | 128,787 |
(C2×Q8⋊C4)⋊17C2 = C2×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):17C2 | 128,1779 |
(C2×Q8⋊C4)⋊18C2 = C2×C8.18D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):18C2 | 128,1781 |
(C2×Q8⋊C4)⋊19C2 = C2×C42.78C22 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):19C2 | 128,1862 |
(C2×Q8⋊C4)⋊20C2 = (C22×D8).C2 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):20C2 | 128,744 |
(C2×Q8⋊C4)⋊21C2 = C2×C22⋊Q16 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):21C2 | 128,1731 |
(C2×Q8⋊C4)⋊22C2 = C2×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):22C2 | 128,1732 |
(C2×Q8⋊C4)⋊23C2 = C2×D4.2D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):23C2 | 128,1763 |
(C2×Q8⋊C4)⋊24C2 = C2×C23.48D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):24C2 | 128,1822 |
(C2×Q8⋊C4)⋊25C2 = D4⋊5Q16 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):25C2 | 128,2031 |
(C2×Q8⋊C4)⋊26C2 = C42.466C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):26C2 | 128,2033 |
(C2×Q8⋊C4)⋊27C2 = M4(2).11D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):27C2 | 128,784 |
(C2×Q8⋊C4)⋊28C2 = (C2×Q8)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):28C2 | 128,1745 |
(C2×Q8⋊C4)⋊29C2 = C42.19C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):29C2 | 128,1778 |
(C2×Q8⋊C4)⋊30C2 = (C2×D4).302D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):30C2 | 128,1829 |
(C2×Q8⋊C4)⋊31C2 = C42.43C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):31C2 | 128,2040 |
(C2×Q8⋊C4)⋊32C2 = C42.47C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):32C2 | 128,2044 |
(C2×Q8⋊C4)⋊33C2 = (C2×C4)⋊3SD16 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):33C2 | 128,745 |
(C2×Q8⋊C4)⋊34C2 = (C2×C8).41D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):34C2 | 128,747 |
(C2×Q8⋊C4)⋊35C2 = C2×Q8⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):35C2 | 128,1730 |
(C2×Q8⋊C4)⋊36C2 = C2×D4.7D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):36C2 | 128,1733 |
(C2×Q8⋊C4)⋊37C2 = C2×D4.D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):37C2 | 128,1762 |
(C2×Q8⋊C4)⋊38C2 = C2×Q8.D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):38C2 | 128,1766 |
(C2×Q8⋊C4)⋊39C2 = C2×C23.47D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):39C2 | 128,1818 |
(C2×Q8⋊C4)⋊40C2 = C2×C23.20D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):40C2 | 128,1820 |
(C2×Q8⋊C4)⋊41C2 = D4⋊8SD16 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):41C2 | 128,2030 |
(C2×Q8⋊C4)⋊42C2 = C42.465C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):42C2 | 128,2032 |
(C2×Q8⋊C4)⋊43C2 = C42.51C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):43C2 | 128,2048 |
(C2×Q8⋊C4)⋊44C2 = C42.55C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):44C2 | 128,2052 |
(C2×Q8⋊C4)⋊45C2 = C24.75D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):45C2 | 128,626 |
(C2×Q8⋊C4)⋊46C2 = M4(2).49D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):46C2 | 128,640 |
(C2×Q8⋊C4)⋊47C2 = C42.110D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):47C2 | 128,691 |
(C2×Q8⋊C4)⋊48C2 = C8⋊(C22⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):48C2 | 128,705 |
(C2×Q8⋊C4)⋊49C2 = C2×C23.38D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):49C2 | 128,1626 |
(C2×Q8⋊C4)⋊50C2 = C2×C23.36D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):50C2 | 128,1627 |
(C2×Q8⋊C4)⋊51C2 = 2- (1+4)⋊4C4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):51C2 | 128,1630 |
(C2×Q8⋊C4)⋊52C2 = C2×SD16⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):52C2 | 128,1672 |
(C2×Q8⋊C4)⋊53C2 = C42.276C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):53C2 | 128,1679 |
(C2×Q8⋊C4)⋊54C2 = C2×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):54C2 | 128,1783 |
(C2×Q8⋊C4)⋊55C2 = C2×C8.D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):55C2 | 128,1785 |
(C2×Q8⋊C4)⋊56C2 = M4(2)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):56C2 | 128,1795 |
(C2×Q8⋊C4)⋊57C2 = C2×C42.28C22 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):57C2 | 128,1864 |
(C2×Q8⋊C4)⋊58C2 = C42.367C23 | φ: C2/C1 → C2 ⊆ Out C2×Q8⋊C4 | 64 | | (C2xQ8:C4):58C2 | 128,1869 |
(C2×Q8⋊C4)⋊59C2 = C2×C23.24D4 | φ: trivial image | 64 | | (C2xQ8:C4):59C2 | 128,1624 |
(C2×Q8⋊C4)⋊60C2 = C2×C4×SD16 | φ: trivial image | 64 | | (C2xQ8:C4):60C2 | 128,1669 |