direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C8.D4, C24.109D4, C8.20(C2×D4), (C2×C8).143D4, C4⋊C4.22C23, C4.Q8⋊49C22, (C2×C8).249C23, (C2×C4).257C24, (C22×Q16)⋊15C2, (C2×Q16)⋊51C22, (C22×C4).427D4, C23.863(C2×D4), C4.151(C22×D4), (C2×Q8).48C23, C4.112(C4⋊D4), Q8⋊C4⋊95C22, (C23×C4).549C22, (C22×C8).257C22, C22.517(C22×D4), (C22×M4(2)).5C2, C22⋊Q8.153C22, C22.176(C4⋊D4), (C22×C4).1536C23, (C22×Q8).280C22, C22.105(C8.C22), (C2×M4(2)).262C22, (C2×C4.Q8)⋊10C2, C4.24(C2×C4○D4), (C2×C4).473(C2×D4), C2.75(C2×C4⋊D4), (C2×Q8⋊C4)⋊55C2, C2.18(C2×C8.C22), (C2×C22⋊Q8).53C2, (C2×C4).703(C4○D4), (C2×C4⋊C4).590C22, SmallGroup(128,1785)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 436 in 246 conjugacy classes, 108 normal (18 characteristic)
C1, C2, C2 [×6], C2 [×2], C4 [×2], C4 [×2], C4 [×10], C22, C22 [×6], C22 [×10], C8 [×4], C8 [×2], C2×C4 [×2], C2×C4 [×6], C2×C4 [×26], Q8 [×12], C23, C23 [×2], C23 [×6], C22⋊C4 [×8], C4⋊C4 [×4], C4⋊C4 [×10], C2×C8 [×8], C2×C8 [×2], M4(2) [×8], Q16 [×8], C22×C4 [×2], C22×C4 [×4], C22×C4 [×8], C2×Q8 [×4], C2×Q8 [×10], C24, Q8⋊C4 [×8], C4.Q8 [×4], C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C2×C4⋊C4 [×2], C22⋊Q8 [×8], C22⋊Q8 [×4], C22×C8 [×2], C2×M4(2) [×4], C2×M4(2) [×4], C2×Q16 [×4], C2×Q16 [×4], C23×C4, C22×Q8 [×2], C2×Q8⋊C4 [×2], C2×C4.Q8, C8.D4 [×8], C2×C22⋊Q8 [×2], C22×M4(2), C22×Q16, C2×C8.D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×2], C24, C4⋊D4 [×4], C8.C22 [×4], C22×D4 [×2], C2×C4○D4, C8.D4 [×4], C2×C4⋊D4, C2×C8.C22 [×2], C2×C8.D4
Generators and relations
G = < a,b,c,d | a2=b8=c4=1, d2=b4, ab=ba, ac=ca, ad=da, cbc-1=b3, dbd-1=b-1, dcd-1=b4c-1 >
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 46)(10 47)(11 48)(12 41)(13 42)(14 43)(15 44)(16 45)(25 39)(26 40)(27 33)(28 34)(29 35)(30 36)(31 37)(32 38)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)(55 64)(56 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 30 43 56)(2 25 44 51)(3 28 45 54)(4 31 46 49)(5 26 47 52)(6 29 48 55)(7 32 41 50)(8 27 42 53)(9 58 18 37)(10 61 19 40)(11 64 20 35)(12 59 21 38)(13 62 22 33)(14 57 23 36)(15 60 24 39)(16 63 17 34)
(1 40 5 36)(2 39 6 35)(3 38 7 34)(4 37 8 33)(9 49 13 53)(10 56 14 52)(11 55 15 51)(12 54 16 50)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(41 63 45 59)(42 62 46 58)(43 61 47 57)(44 60 48 64)
G:=sub<Sym(64)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(56,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,30,43,56)(2,25,44,51)(3,28,45,54)(4,31,46,49)(5,26,47,52)(6,29,48,55)(7,32,41,50)(8,27,42,53)(9,58,18,37)(10,61,19,40)(11,64,20,35)(12,59,21,38)(13,62,22,33)(14,57,23,36)(15,60,24,39)(16,63,17,34), (1,40,5,36)(2,39,6,35)(3,38,7,34)(4,37,8,33)(9,49,13,53)(10,56,14,52)(11,55,15,51)(12,54,16,50)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(41,63,45,59)(42,62,46,58)(43,61,47,57)(44,60,48,64)>;
G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(56,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,30,43,56)(2,25,44,51)(3,28,45,54)(4,31,46,49)(5,26,47,52)(6,29,48,55)(7,32,41,50)(8,27,42,53)(9,58,18,37)(10,61,19,40)(11,64,20,35)(12,59,21,38)(13,62,22,33)(14,57,23,36)(15,60,24,39)(16,63,17,34), (1,40,5,36)(2,39,6,35)(3,38,7,34)(4,37,8,33)(9,49,13,53)(10,56,14,52)(11,55,15,51)(12,54,16,50)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(41,63,45,59)(42,62,46,58)(43,61,47,57)(44,60,48,64) );
G=PermutationGroup([(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,46),(10,47),(11,48),(12,41),(13,42),(14,43),(15,44),(16,45),(25,39),(26,40),(27,33),(28,34),(29,35),(30,36),(31,37),(32,38),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63),(55,64),(56,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,30,43,56),(2,25,44,51),(3,28,45,54),(4,31,46,49),(5,26,47,52),(6,29,48,55),(7,32,41,50),(8,27,42,53),(9,58,18,37),(10,61,19,40),(11,64,20,35),(12,59,21,38),(13,62,22,33),(14,57,23,36),(15,60,24,39),(16,63,17,34)], [(1,40,5,36),(2,39,6,35),(3,38,7,34),(4,37,8,33),(9,49,13,53),(10,56,14,52),(11,55,15,51),(12,54,16,50),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(41,63,45,59),(42,62,46,58),(43,61,47,57),(44,60,48,64)])
Matrix representation ►G ⊆ GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 16 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 10 |
0 | 0 | 0 | 0 | 10 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 10 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 |
0 | 0 | 0 | 0 | 10 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,2,16,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0],[7,9,0,0,0,0,0,0,2,10,0,0,0,0,0,0,0,0,10,11,0,0,0,0,0,0,8,7,0,0,0,0,0,0,0,0,0,0,10,1,0,0,0,0,0,0,1,7,0,0,0,0,7,16,0,0,0,0,0,0,16,10,0,0],[7,10,0,0,0,0,0,0,2,10,0,0,0,0,0,0,0,0,10,11,0,0,0,0,0,0,8,7,0,0,0,0,0,0,0,0,0,0,10,1,0,0,0,0,0,0,1,7,0,0,0,0,10,1,0,0,0,0,0,0,1,7,0,0] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4○D4 | C8.C22 |
kernel | C2×C8.D4 | C2×Q8⋊C4 | C2×C4.Q8 | C8.D4 | C2×C22⋊Q8 | C22×M4(2) | C22×Q16 | C2×C8 | C22×C4 | C24 | C2×C4 | C22 |
# reps | 1 | 2 | 1 | 8 | 2 | 1 | 1 | 4 | 3 | 1 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_2\times C_8.D_4
% in TeX
G:=Group("C2xC8.D4");
// GroupNames label
G:=SmallGroup(128,1785);
// by ID
G=gap.SmallGroup(128,1785);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,568,758,723,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^3,d*b*d^-1=b^-1,d*c*d^-1=b^4*c^-1>;
// generators/relations