direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×Q8⋊C4, C23.55D4, C22.5Q16, C22.11SD16, Q8⋊3(C2×C4), (C2×Q8)⋊5C4, C4.48(C2×D4), (C2×C4).70D4, C2.1(C2×Q16), C4.2(C22×C4), (C22×C8).5C2, C2.2(C2×SD16), C4⋊C4.42C22, (C2×C4).60C23, (C2×C8).58C22, C22.42(C2×D4), (C22×Q8).4C2, C4.13(C22⋊C4), (C2×Q8).40C22, C22.33(C22⋊C4), (C22×C4).108C22, (C2×C4⋊C4).12C2, (C2×C4).44(C2×C4), C2.18(C2×C22⋊C4), SmallGroup(64,96)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×Q8⋊C4
G = < a,b,c,d | a2=b4=d4=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=b-1c >
Subgroups: 121 in 81 conjugacy classes, 49 normal (15 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, Q8, C23, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, Q8⋊C4, C2×C4⋊C4, C22×C8, C22×Q8, C2×Q8⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, SD16, Q16, C22×C4, C2×D4, Q8⋊C4, C2×C22⋊C4, C2×SD16, C2×Q16, C2×Q8⋊C4
Character table of C2×Q8⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | i | -1 | 1 | -i | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | -i | -1 | 1 | i | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ11 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | -i | i | 1 | 1 | i | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ12 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | i | i | -i | 1 | 1 | -i | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ13 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | i | i | -i | -1 | -1 | -i | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ14 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -i | -i | i | -1 | -1 | i | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ15 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | 1 | -1 | i | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | i | 1 | -1 | -i | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ24 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ25 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ26 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ27 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ28 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
(1 20)(2 17)(3 18)(4 19)(5 54)(6 55)(7 56)(8 53)(9 16)(10 13)(11 14)(12 15)(21 35)(22 36)(23 33)(24 34)(25 31)(26 32)(27 29)(28 30)(37 52)(38 49)(39 50)(40 51)(41 47)(42 48)(43 45)(44 46)(57 64)(58 61)(59 62)(60 63)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 34 3 36)(2 33 4 35)(5 39 7 37)(6 38 8 40)(9 32 11 30)(10 31 12 29)(13 25 15 27)(14 28 16 26)(17 23 19 21)(18 22 20 24)(41 64 43 62)(42 63 44 61)(45 59 47 57)(46 58 48 60)(49 53 51 55)(50 56 52 54)
(1 49 11 48)(2 52 12 47)(3 51 9 46)(4 50 10 45)(5 28 64 24)(6 27 61 23)(7 26 62 22)(8 25 63 21)(13 43 19 39)(14 42 20 38)(15 41 17 37)(16 44 18 40)(29 58 33 55)(30 57 34 54)(31 60 35 53)(32 59 36 56)
G:=sub<Sym(64)| (1,20)(2,17)(3,18)(4,19)(5,54)(6,55)(7,56)(8,53)(9,16)(10,13)(11,14)(12,15)(21,35)(22,36)(23,33)(24,34)(25,31)(26,32)(27,29)(28,30)(37,52)(38,49)(39,50)(40,51)(41,47)(42,48)(43,45)(44,46)(57,64)(58,61)(59,62)(60,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,34,3,36)(2,33,4,35)(5,39,7,37)(6,38,8,40)(9,32,11,30)(10,31,12,29)(13,25,15,27)(14,28,16,26)(17,23,19,21)(18,22,20,24)(41,64,43,62)(42,63,44,61)(45,59,47,57)(46,58,48,60)(49,53,51,55)(50,56,52,54), (1,49,11,48)(2,52,12,47)(3,51,9,46)(4,50,10,45)(5,28,64,24)(6,27,61,23)(7,26,62,22)(8,25,63,21)(13,43,19,39)(14,42,20,38)(15,41,17,37)(16,44,18,40)(29,58,33,55)(30,57,34,54)(31,60,35,53)(32,59,36,56)>;
G:=Group( (1,20)(2,17)(3,18)(4,19)(5,54)(6,55)(7,56)(8,53)(9,16)(10,13)(11,14)(12,15)(21,35)(22,36)(23,33)(24,34)(25,31)(26,32)(27,29)(28,30)(37,52)(38,49)(39,50)(40,51)(41,47)(42,48)(43,45)(44,46)(57,64)(58,61)(59,62)(60,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,34,3,36)(2,33,4,35)(5,39,7,37)(6,38,8,40)(9,32,11,30)(10,31,12,29)(13,25,15,27)(14,28,16,26)(17,23,19,21)(18,22,20,24)(41,64,43,62)(42,63,44,61)(45,59,47,57)(46,58,48,60)(49,53,51,55)(50,56,52,54), (1,49,11,48)(2,52,12,47)(3,51,9,46)(4,50,10,45)(5,28,64,24)(6,27,61,23)(7,26,62,22)(8,25,63,21)(13,43,19,39)(14,42,20,38)(15,41,17,37)(16,44,18,40)(29,58,33,55)(30,57,34,54)(31,60,35,53)(32,59,36,56) );
G=PermutationGroup([[(1,20),(2,17),(3,18),(4,19),(5,54),(6,55),(7,56),(8,53),(9,16),(10,13),(11,14),(12,15),(21,35),(22,36),(23,33),(24,34),(25,31),(26,32),(27,29),(28,30),(37,52),(38,49),(39,50),(40,51),(41,47),(42,48),(43,45),(44,46),(57,64),(58,61),(59,62),(60,63)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,34,3,36),(2,33,4,35),(5,39,7,37),(6,38,8,40),(9,32,11,30),(10,31,12,29),(13,25,15,27),(14,28,16,26),(17,23,19,21),(18,22,20,24),(41,64,43,62),(42,63,44,61),(45,59,47,57),(46,58,48,60),(49,53,51,55),(50,56,52,54)], [(1,49,11,48),(2,52,12,47),(3,51,9,46),(4,50,10,45),(5,28,64,24),(6,27,61,23),(7,26,62,22),(8,25,63,21),(13,43,19,39),(14,42,20,38),(15,41,17,37),(16,44,18,40),(29,58,33,55),(30,57,34,54),(31,60,35,53),(32,59,36,56)]])
C2×Q8⋊C4 is a maximal subgroup of
Q8⋊C42 C24.155D4 C42.99D4 C42.101D4 Q8⋊(C4⋊C4) C24.160D4 (C2×SD16)⋊15C4 C24.135D4 C24.75D4 C4.68(C4×D4) C2.(C8⋊8D4) C2.(C8⋊D4) C42.431D4 C42.433D4 C42.110D4 C42.111D4 (C2×C4)⋊9SD16 (C2×C4)⋊6Q16 (C2×Q16)⋊10C4 C8⋊(C22⋊C4) C42.117D4 (C2×C4)⋊3SD16 (C2×C4)⋊2Q16 (C2×Q8)⋊Q8 C24.86D4 C4⋊C4.95D4 (C2×C4)⋊3Q16 (C2×Q8).8Q8 (C2×C4).19Q16 (C2×Q8).109D4 (C2×C8).60D4 (C2×C8).170D4 (C2×C8).171D4 2- 1+4⋊4C4 C2×C4×SD16 C2×C4×Q16 C42.276C23 (C2×Q8)⋊17D4 C42.19C23 M4(2)⋊17D4 C42.21C23 (C2×D4).302D4 C42.367C23 D4⋊8SD16 D4⋊5Q16 C42.465C23 C42.466C23 C42.43C23 C42.47C23 C42.51C23 C42.55C23
C2.(D4.pD4): C24.65D4 Q8⋊C4⋊C4 C24.73D4 (C2×SD16)⋊14C4 (C2×C4)⋊9Q16 M4(2).49D4 C2.(C4×Q16) C4.10D4⋊3C4 ...
C2×Q8⋊C4 is a maximal quotient of
C42.46D4 Q8⋊M4(2) C42.316D4 C42.404D4 C42.62D4 C24.61D4 C42.410D4 C42.415D4 C42.416D4 C42.79D4 C24.155D4 C42.99D4 C24.157D4 C24.160D4 C24.135D4 C42.431D4 C42.117D4 C42.121D4 C42.436D4
Matrix representation of C2×Q8⋊C4 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 1 | 16 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 9 |
0 | 0 | 0 | 13 |
13 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 10 | 7 |
0 | 0 | 5 | 7 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,15,16],[16,0,0,0,0,1,0,0,0,0,4,0,0,0,9,13],[13,0,0,0,0,16,0,0,0,0,10,5,0,0,7,7] >;
C2×Q8⋊C4 in GAP, Magma, Sage, TeX
C_2\times Q_8\rtimes C_4
% in TeX
G:=Group("C2xQ8:C4");
// GroupNames label
G:=SmallGroup(64,96);
// by ID
G=gap.SmallGroup(64,96);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,199,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=d^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^-1*c>;
// generators/relations
Export