direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C8⋊D4, C24.107D4, (C2×C8)⋊8D4, C8⋊4(C2×D4), C4⋊C4.20C23, C2.D8⋊68C22, (C2×C4).255C24, (C2×C8).247C23, (C22×SD16)⋊1C2, (C2×D4).59C23, C4.149(C22×D4), C23.861(C2×D4), (C22×C4).425D4, C22⋊Q8⋊66C22, (C2×Q8).47C23, C4.110(C4⋊D4), D4⋊C4⋊90C22, Q8⋊C4⋊94C22, (C2×SD16)⋊54C22, (C22×M4(2))⋊1C2, C4⋊D4.148C22, (C2×M4(2))⋊50C22, (C22×C8).255C22, (C23×C4).547C22, C22.515(C22×D4), C22.174(C4⋊D4), C22.115(C8⋊C22), (C22×C4).1534C23, (C22×D4).346C22, (C22×Q8).279C22, C22.104(C8.C22), (C2×C2.D8)⋊40C2, C4.22(C2×C4○D4), (C2×C4).471(C2×D4), C2.73(C2×C4⋊D4), C2.17(C2×C8⋊C22), (C2×C22⋊Q8)⋊55C2, (C2×D4⋊C4)⋊53C2, (C2×Q8⋊C4)⋊54C2, (C2×C4⋊D4).54C2, C2.17(C2×C8.C22), (C2×C4).701(C4○D4), (C2×C4⋊C4).588C22, SmallGroup(128,1783)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 564 in 272 conjugacy classes, 108 normal (28 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×2], C4 [×2], C4 [×8], C22, C22 [×6], C22 [×20], C8 [×4], C8 [×2], C2×C4 [×2], C2×C4 [×6], C2×C4 [×22], D4 [×14], Q8 [×6], C23, C23 [×2], C23 [×14], C22⋊C4 [×8], C4⋊C4 [×4], C4⋊C4 [×6], C2×C8 [×8], C2×C8 [×2], M4(2) [×8], SD16 [×8], C22×C4 [×2], C22×C4 [×4], C22×C4 [×7], C2×D4 [×2], C2×D4 [×13], C2×Q8 [×2], C2×Q8 [×5], C24, C24, D4⋊C4 [×4], Q8⋊C4 [×4], C2.D8 [×4], C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C2×C4⋊C4, C4⋊D4 [×4], C4⋊D4 [×2], C22⋊Q8 [×4], C22⋊Q8 [×2], C22×C8 [×2], C2×M4(2) [×4], C2×M4(2) [×4], C2×SD16 [×4], C2×SD16 [×4], C23×C4, C22×D4, C22×D4, C22×Q8, C2×D4⋊C4, C2×Q8⋊C4, C2×C2.D8, C8⋊D4 [×8], C2×C4⋊D4, C2×C22⋊Q8, C22×M4(2), C22×SD16, C2×C8⋊D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×2], C24, C4⋊D4 [×4], C8⋊C22 [×2], C8.C22 [×2], C22×D4 [×2], C2×C4○D4, C8⋊D4 [×4], C2×C4⋊D4, C2×C8⋊C22, C2×C8.C22, C2×C8⋊D4
Generators and relations
G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=b3, dcd=c-1 >
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 53)(10 54)(11 55)(12 56)(13 49)(14 50)(15 51)(16 52)(17 45)(18 46)(19 47)(20 48)(21 41)(22 42)(23 43)(24 44)(33 62)(34 63)(35 64)(36 57)(37 58)(38 59)(39 60)(40 61)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 47 15 38)(2 46 16 37)(3 45 9 36)(4 44 10 35)(5 43 11 34)(6 42 12 33)(7 41 13 40)(8 48 14 39)(17 53 57 27)(18 52 58 26)(19 51 59 25)(20 50 60 32)(21 49 61 31)(22 56 62 30)(23 55 63 29)(24 54 64 28)
(1 55)(2 50)(3 53)(4 56)(5 51)(6 54)(7 49)(8 52)(9 27)(10 30)(11 25)(12 28)(13 31)(14 26)(15 29)(16 32)(17 45)(18 48)(19 43)(20 46)(21 41)(22 44)(23 47)(24 42)(33 64)(34 59)(35 62)(36 57)(37 60)(38 63)(39 58)(40 61)
G:=sub<Sym(64)| (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(33,62)(34,63)(35,64)(36,57)(37,58)(38,59)(39,60)(40,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47,15,38)(2,46,16,37)(3,45,9,36)(4,44,10,35)(5,43,11,34)(6,42,12,33)(7,41,13,40)(8,48,14,39)(17,53,57,27)(18,52,58,26)(19,51,59,25)(20,50,60,32)(21,49,61,31)(22,56,62,30)(23,55,63,29)(24,54,64,28), (1,55)(2,50)(3,53)(4,56)(5,51)(6,54)(7,49)(8,52)(9,27)(10,30)(11,25)(12,28)(13,31)(14,26)(15,29)(16,32)(17,45)(18,48)(19,43)(20,46)(21,41)(22,44)(23,47)(24,42)(33,64)(34,59)(35,62)(36,57)(37,60)(38,63)(39,58)(40,61)>;
G:=Group( (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(33,62)(34,63)(35,64)(36,57)(37,58)(38,59)(39,60)(40,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47,15,38)(2,46,16,37)(3,45,9,36)(4,44,10,35)(5,43,11,34)(6,42,12,33)(7,41,13,40)(8,48,14,39)(17,53,57,27)(18,52,58,26)(19,51,59,25)(20,50,60,32)(21,49,61,31)(22,56,62,30)(23,55,63,29)(24,54,64,28), (1,55)(2,50)(3,53)(4,56)(5,51)(6,54)(7,49)(8,52)(9,27)(10,30)(11,25)(12,28)(13,31)(14,26)(15,29)(16,32)(17,45)(18,48)(19,43)(20,46)(21,41)(22,44)(23,47)(24,42)(33,64)(34,59)(35,62)(36,57)(37,60)(38,63)(39,58)(40,61) );
G=PermutationGroup([(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,53),(10,54),(11,55),(12,56),(13,49),(14,50),(15,51),(16,52),(17,45),(18,46),(19,47),(20,48),(21,41),(22,42),(23,43),(24,44),(33,62),(34,63),(35,64),(36,57),(37,58),(38,59),(39,60),(40,61)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,47,15,38),(2,46,16,37),(3,45,9,36),(4,44,10,35),(5,43,11,34),(6,42,12,33),(7,41,13,40),(8,48,14,39),(17,53,57,27),(18,52,58,26),(19,51,59,25),(20,50,60,32),(21,49,61,31),(22,56,62,30),(23,55,63,29),(24,54,64,28)], [(1,55),(2,50),(3,53),(4,56),(5,51),(6,54),(7,49),(8,52),(9,27),(10,30),(11,25),(12,28),(13,31),(14,26),(15,29),(16,32),(17,45),(18,48),(19,43),(20,46),(21,41),(22,44),(23,47),(24,42),(33,64),(34,59),(35,62),(36,57),(37,60),(38,63),(39,58),(40,61)])
Matrix representation ►G ⊆ GL8(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 3 | 0 | 11 |
0 | 0 | 0 | 0 | 3 | 14 | 11 | 6 |
0 | 0 | 0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 11 | 14 | 6 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 16 | 16 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 16 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 16 | 1 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,14,3,3,3,0,0,0,0,3,14,14,11,0,0,0,0,0,11,0,14,0,0,0,0,11,6,0,6],[0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,16,0,0,0,0,0,2,0,1],[16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,1] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4○D4 | C8⋊C22 | C8.C22 |
kernel | C2×C8⋊D4 | C2×D4⋊C4 | C2×Q8⋊C4 | C2×C2.D8 | C8⋊D4 | C2×C4⋊D4 | C2×C22⋊Q8 | C22×M4(2) | C22×SD16 | C2×C8 | C22×C4 | C24 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 4 | 3 | 1 | 4 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2\times C_8\rtimes D_4
% in TeX
G:=Group("C2xC8:D4");
// GroupNames label
G:=SmallGroup(128,1783);
// by ID
G=gap.SmallGroup(128,1783);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,723,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=b^3,d*c*d=c^-1>;
// generators/relations