Copied to
clipboard

?

G = C2×C4.SD16order 128 = 27

Direct product of C2 and C4.SD16

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C4.SD16, C42.353D4, C42.704C23, C4.13(C2×Q16), (C2×C4).43Q16, C4⋊C4.82C23, C4.21(C2×SD16), (C2×C4).80SD16, (C2×C8).489C23, (C4×C8).382C22, (C2×C4).327C24, (C22×C4).609D4, C23.871(C2×D4), C4⋊Q8.271C22, (C2×Q8).84C23, C2.10(C22×Q16), C22.49(C2×Q16), C4.19(C4.4D4), C22.87(C2×SD16), C2.17(C22×SD16), (C22×C8).518C22, C22.587(C22×D4), (C2×C42).1122C22, (C22×C4).1549C23, Q8⋊C4.135C22, C22.81(C4.4D4), (C22×Q8).297C22, (C2×C4×C8).30C2, C4.36(C2×C4○D4), (C2×C4⋊Q8).45C2, (C2×C4).850(C2×D4), C2.38(C2×C4.4D4), (C2×C4).706(C4○D4), (C2×C4⋊C4).619C22, (C2×Q8⋊C4).18C2, SmallGroup(128,1861)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C4.SD16
C1C2C4C2×C4C22×C4C22×C8C2×C4×C8 — C2×C4.SD16
C1C2C2×C4 — C2×C4.SD16
C1C23C2×C42 — C2×C4.SD16
C1C2C2C2×C4 — C2×C4.SD16

Subgroups: 372 in 212 conjugacy classes, 116 normal (16 characteristic)
C1, C2 [×3], C2 [×4], C4 [×12], C4 [×8], C22, C22 [×6], C8 [×4], C2×C4 [×2], C2×C4 [×16], C2×C4 [×16], Q8 [×20], C23, C42 [×4], C4⋊C4 [×4], C4⋊C4 [×14], C2×C8 [×4], C2×C8 [×4], C22×C4 [×3], C22×C4 [×4], C2×Q8 [×4], C2×Q8 [×18], C4×C8 [×4], Q8⋊C4 [×16], C2×C42, C2×C4⋊C4 [×2], C2×C4⋊C4 [×3], C4⋊Q8 [×8], C4⋊Q8 [×4], C22×C8 [×2], C22×Q8 [×2], C22×Q8, C2×C4×C8, C2×Q8⋊C4 [×4], C4.SD16 [×8], C2×C4⋊Q8 [×2], C2×C4.SD16

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], SD16 [×4], Q16 [×4], C2×D4 [×6], C4○D4 [×4], C24, C4.4D4 [×4], C2×SD16 [×6], C2×Q16 [×6], C22×D4, C2×C4○D4 [×2], C4.SD16 [×4], C2×C4.4D4, C22×SD16, C22×Q16, C2×C4.SD16

Generators and relations
 G = < a,b,c,d | a2=b4=c8=1, d2=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=b2c3 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 55)(10 56)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 75)(18 76)(19 77)(20 78)(21 79)(22 80)(23 73)(24 74)(33 60)(34 61)(35 62)(36 63)(37 64)(38 57)(39 58)(40 59)(41 70)(42 71)(43 72)(44 65)(45 66)(46 67)(47 68)(48 69)(81 89)(82 90)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)(97 126)(98 127)(99 128)(100 121)(101 122)(102 123)(103 124)(104 125)(105 113)(106 114)(107 115)(108 116)(109 117)(110 118)(111 119)(112 120)
(1 62 13 20)(2 63 14 21)(3 64 15 22)(4 57 16 23)(5 58 9 24)(6 59 10 17)(7 60 11 18)(8 61 12 19)(25 33 49 76)(26 34 50 77)(27 35 51 78)(28 36 52 79)(29 37 53 80)(30 38 54 73)(31 39 55 74)(32 40 56 75)(41 89 101 113)(42 90 102 114)(43 91 103 115)(44 92 104 116)(45 93 97 117)(46 94 98 118)(47 95 99 119)(48 96 100 120)(65 84 125 108)(66 85 126 109)(67 86 127 110)(68 87 128 111)(69 88 121 112)(70 81 122 105)(71 82 123 106)(72 83 124 107)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 90 13 114)(2 117 14 93)(3 96 15 120)(4 115 16 91)(5 94 9 118)(6 113 10 89)(7 92 11 116)(8 119 12 95)(17 41 59 101)(18 104 60 44)(19 47 61 99)(20 102 62 42)(21 45 63 97)(22 100 64 48)(23 43 57 103)(24 98 58 46)(25 84 49 108)(26 111 50 87)(27 82 51 106)(28 109 52 85)(29 88 53 112)(30 107 54 83)(31 86 55 110)(32 105 56 81)(33 65 76 125)(34 128 77 68)(35 71 78 123)(36 126 79 66)(37 69 80 121)(38 124 73 72)(39 67 74 127)(40 122 75 70)

G:=sub<Sym(128)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,55)(10,56)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,75)(18,76)(19,77)(20,78)(21,79)(22,80)(23,73)(24,74)(33,60)(34,61)(35,62)(36,63)(37,64)(38,57)(39,58)(40,59)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(97,126)(98,127)(99,128)(100,121)(101,122)(102,123)(103,124)(104,125)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)(112,120), (1,62,13,20)(2,63,14,21)(3,64,15,22)(4,57,16,23)(5,58,9,24)(6,59,10,17)(7,60,11,18)(8,61,12,19)(25,33,49,76)(26,34,50,77)(27,35,51,78)(28,36,52,79)(29,37,53,80)(30,38,54,73)(31,39,55,74)(32,40,56,75)(41,89,101,113)(42,90,102,114)(43,91,103,115)(44,92,104,116)(45,93,97,117)(46,94,98,118)(47,95,99,119)(48,96,100,120)(65,84,125,108)(66,85,126,109)(67,86,127,110)(68,87,128,111)(69,88,121,112)(70,81,122,105)(71,82,123,106)(72,83,124,107), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,90,13,114)(2,117,14,93)(3,96,15,120)(4,115,16,91)(5,94,9,118)(6,113,10,89)(7,92,11,116)(8,119,12,95)(17,41,59,101)(18,104,60,44)(19,47,61,99)(20,102,62,42)(21,45,63,97)(22,100,64,48)(23,43,57,103)(24,98,58,46)(25,84,49,108)(26,111,50,87)(27,82,51,106)(28,109,52,85)(29,88,53,112)(30,107,54,83)(31,86,55,110)(32,105,56,81)(33,65,76,125)(34,128,77,68)(35,71,78,123)(36,126,79,66)(37,69,80,121)(38,124,73,72)(39,67,74,127)(40,122,75,70)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,55)(10,56)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,75)(18,76)(19,77)(20,78)(21,79)(22,80)(23,73)(24,74)(33,60)(34,61)(35,62)(36,63)(37,64)(38,57)(39,58)(40,59)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(97,126)(98,127)(99,128)(100,121)(101,122)(102,123)(103,124)(104,125)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)(112,120), (1,62,13,20)(2,63,14,21)(3,64,15,22)(4,57,16,23)(5,58,9,24)(6,59,10,17)(7,60,11,18)(8,61,12,19)(25,33,49,76)(26,34,50,77)(27,35,51,78)(28,36,52,79)(29,37,53,80)(30,38,54,73)(31,39,55,74)(32,40,56,75)(41,89,101,113)(42,90,102,114)(43,91,103,115)(44,92,104,116)(45,93,97,117)(46,94,98,118)(47,95,99,119)(48,96,100,120)(65,84,125,108)(66,85,126,109)(67,86,127,110)(68,87,128,111)(69,88,121,112)(70,81,122,105)(71,82,123,106)(72,83,124,107), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,90,13,114)(2,117,14,93)(3,96,15,120)(4,115,16,91)(5,94,9,118)(6,113,10,89)(7,92,11,116)(8,119,12,95)(17,41,59,101)(18,104,60,44)(19,47,61,99)(20,102,62,42)(21,45,63,97)(22,100,64,48)(23,43,57,103)(24,98,58,46)(25,84,49,108)(26,111,50,87)(27,82,51,106)(28,109,52,85)(29,88,53,112)(30,107,54,83)(31,86,55,110)(32,105,56,81)(33,65,76,125)(34,128,77,68)(35,71,78,123)(36,126,79,66)(37,69,80,121)(38,124,73,72)(39,67,74,127)(40,122,75,70) );

G=PermutationGroup([(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,55),(10,56),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,75),(18,76),(19,77),(20,78),(21,79),(22,80),(23,73),(24,74),(33,60),(34,61),(35,62),(36,63),(37,64),(38,57),(39,58),(40,59),(41,70),(42,71),(43,72),(44,65),(45,66),(46,67),(47,68),(48,69),(81,89),(82,90),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96),(97,126),(98,127),(99,128),(100,121),(101,122),(102,123),(103,124),(104,125),(105,113),(106,114),(107,115),(108,116),(109,117),(110,118),(111,119),(112,120)], [(1,62,13,20),(2,63,14,21),(3,64,15,22),(4,57,16,23),(5,58,9,24),(6,59,10,17),(7,60,11,18),(8,61,12,19),(25,33,49,76),(26,34,50,77),(27,35,51,78),(28,36,52,79),(29,37,53,80),(30,38,54,73),(31,39,55,74),(32,40,56,75),(41,89,101,113),(42,90,102,114),(43,91,103,115),(44,92,104,116),(45,93,97,117),(46,94,98,118),(47,95,99,119),(48,96,100,120),(65,84,125,108),(66,85,126,109),(67,86,127,110),(68,87,128,111),(69,88,121,112),(70,81,122,105),(71,82,123,106),(72,83,124,107)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,90,13,114),(2,117,14,93),(3,96,15,120),(4,115,16,91),(5,94,9,118),(6,113,10,89),(7,92,11,116),(8,119,12,95),(17,41,59,101),(18,104,60,44),(19,47,61,99),(20,102,62,42),(21,45,63,97),(22,100,64,48),(23,43,57,103),(24,98,58,46),(25,84,49,108),(26,111,50,87),(27,82,51,106),(28,109,52,85),(29,88,53,112),(30,107,54,83),(31,86,55,110),(32,105,56,81),(33,65,76,125),(34,128,77,68),(35,71,78,123),(36,126,79,66),(37,69,80,121),(38,124,73,72),(39,67,74,127),(40,122,75,70)])

Matrix representation G ⊆ GL6(𝔽17)

100000
010000
0016000
0001600
000010
000001
,
0130000
1300000
0013900
000400
000010
000001
,
010000
100000
0013000
0001300
000055
0000125
,
530000
14120000
00161500
001100
000064
0000411

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,13,0,0,0,0,0,9,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,5,12,0,0,0,0,5,5],[5,14,0,0,0,0,3,12,0,0,0,0,0,0,16,1,0,0,0,0,15,1,0,0,0,0,0,0,6,4,0,0,0,0,4,11] >;

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim1111122222
type+++++++-
imageC1C2C2C2C2D4D4SD16Q16C4○D4
kernelC2×C4.SD16C2×C4×C8C2×Q8⋊C4C4.SD16C2×C4⋊Q8C42C22×C4C2×C4C2×C4C2×C4
# reps1148222888

In GAP, Magma, Sage, TeX

C_2\times C_4.SD_{16}
% in TeX

G:=Group("C2xC4.SD16");
// GroupNames label

G:=SmallGroup(128,1861);
// by ID

G=gap.SmallGroup(128,1861);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,232,758,100,2804,172,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^3>;
// generators/relations

׿
×
𝔽