Copied to
clipboard

G = (C2×C8).60D4order 128 = 27

28th non-split extension by C2×C8 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×C8).60D4, (C2×Q8).10Q8, (C2×C4).22Q16, C2.18(C83D4), C2.9(C4⋊Q16), C23.942(C2×D4), (C22×C4).326D4, C4.42(C22⋊Q8), C22.64(C2×Q16), C429C4.18C2, C2.10(C4.Q16), C22.81(C41D4), (C22×C8).124C22, (C2×C42).393C22, C2.8(C23.4Q8), (C22×Q8).81C22, C22.160(C8⋊C22), (C22×C4).1476C23, C4.36(C22.D4), C22.119(C22⋊Q8), C2.10(C23.48D4), C22.7C42.26C2, C23.67C23.21C2, C22.129(C22.D4), (C2×C4).751(C2×D4), (C2×C4).293(C2×Q8), (C2×C2.D8).20C2, (C2×C4).782(C4○D4), (C2×C4⋊C4).165C22, (C2×Q8⋊C4).21C2, SmallGroup(128,827)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×C8).60D4
C1C2C22C2×C4C22×C4C22×Q8C23.67C23 — (C2×C8).60D4
C1C2C22×C4 — (C2×C8).60D4
C1C23C2×C42 — (C2×C8).60D4
C1C2C2C22×C4 — (C2×C8).60D4

Generators and relations for (C2×C8).60D4
 G = < a,b,c,d | a2=b8=1, c4=b4, d2=ab4, cbc-1=ab=ba, ac=ca, ad=da, dbd-1=b-1, dcd-1=b4c3 >

Subgroups: 256 in 127 conjugacy classes, 54 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, Q8⋊C4, C2.D8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22×Q8, C22.7C42, C429C4, C23.67C23, C2×Q8⋊C4, C2×C2.D8, (C2×C8).60D4
Quotients: C1, C2, C22, D4, Q8, C23, Q16, C2×D4, C2×Q8, C4○D4, C22⋊Q8, C22.D4, C41D4, C2×Q16, C8⋊C22, C23.4Q8, C4.Q16, C23.48D4, C4⋊Q16, C83D4, (C2×C8).60D4

Smallest permutation representation of (C2×C8).60D4
Regular action on 128 points
Generators in S128
(1 123)(2 124)(3 125)(4 126)(5 127)(6 128)(7 121)(8 122)(9 62)(10 63)(11 64)(12 57)(13 58)(14 59)(15 60)(16 61)(17 36)(18 37)(19 38)(20 39)(21 40)(22 33)(23 34)(24 35)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)(49 111)(50 112)(51 105)(52 106)(53 107)(54 108)(55 109)(56 110)(65 119)(66 120)(67 113)(68 114)(69 115)(70 116)(71 117)(72 118)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)(79 97)(80 98)(81 93)(82 94)(83 95)(84 96)(85 89)(86 90)(87 91)(88 92)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 37 58 86 5 33 62 82)(2 19 59 91 6 23 63 95)(3 39 60 88 7 35 64 84)(4 21 61 93 8 17 57 89)(9 94 123 18 13 90 127 22)(10 83 124 38 14 87 128 34)(11 96 125 20 15 92 121 24)(12 85 126 40 16 81 122 36)(25 107 101 119 29 111 97 115)(26 54 102 66 30 50 98 70)(27 109 103 113 31 105 99 117)(28 56 104 68 32 52 100 72)(41 53 75 65 45 49 79 69)(42 108 76 120 46 112 80 116)(43 55 77 67 47 51 73 71)(44 110 78 114 48 106 74 118)
(1 78 127 100)(2 77 128 99)(3 76 121 98)(4 75 122 97)(5 74 123 104)(6 73 124 103)(7 80 125 102)(8 79 126 101)(9 32 58 44)(10 31 59 43)(11 30 60 42)(12 29 61 41)(13 28 62 48)(14 27 63 47)(15 26 64 46)(16 25 57 45)(17 49 40 107)(18 56 33 106)(19 55 34 105)(20 54 35 112)(21 53 36 111)(22 52 37 110)(23 51 38 109)(24 50 39 108)(65 81 115 89)(66 88 116 96)(67 87 117 95)(68 86 118 94)(69 85 119 93)(70 84 120 92)(71 83 113 91)(72 82 114 90)

G:=sub<Sym(128)| (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,121)(8,122)(9,62)(10,63)(11,64)(12,57)(13,58)(14,59)(15,60)(16,61)(17,36)(18,37)(19,38)(20,39)(21,40)(22,33)(23,34)(24,35)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(49,111)(50,112)(51,105)(52,106)(53,107)(54,108)(55,109)(56,110)(65,119)(66,120)(67,113)(68,114)(69,115)(70,116)(71,117)(72,118)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,97)(80,98)(81,93)(82,94)(83,95)(84,96)(85,89)(86,90)(87,91)(88,92), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,37,58,86,5,33,62,82)(2,19,59,91,6,23,63,95)(3,39,60,88,7,35,64,84)(4,21,61,93,8,17,57,89)(9,94,123,18,13,90,127,22)(10,83,124,38,14,87,128,34)(11,96,125,20,15,92,121,24)(12,85,126,40,16,81,122,36)(25,107,101,119,29,111,97,115)(26,54,102,66,30,50,98,70)(27,109,103,113,31,105,99,117)(28,56,104,68,32,52,100,72)(41,53,75,65,45,49,79,69)(42,108,76,120,46,112,80,116)(43,55,77,67,47,51,73,71)(44,110,78,114,48,106,74,118), (1,78,127,100)(2,77,128,99)(3,76,121,98)(4,75,122,97)(5,74,123,104)(6,73,124,103)(7,80,125,102)(8,79,126,101)(9,32,58,44)(10,31,59,43)(11,30,60,42)(12,29,61,41)(13,28,62,48)(14,27,63,47)(15,26,64,46)(16,25,57,45)(17,49,40,107)(18,56,33,106)(19,55,34,105)(20,54,35,112)(21,53,36,111)(22,52,37,110)(23,51,38,109)(24,50,39,108)(65,81,115,89)(66,88,116,96)(67,87,117,95)(68,86,118,94)(69,85,119,93)(70,84,120,92)(71,83,113,91)(72,82,114,90)>;

G:=Group( (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,121)(8,122)(9,62)(10,63)(11,64)(12,57)(13,58)(14,59)(15,60)(16,61)(17,36)(18,37)(19,38)(20,39)(21,40)(22,33)(23,34)(24,35)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(49,111)(50,112)(51,105)(52,106)(53,107)(54,108)(55,109)(56,110)(65,119)(66,120)(67,113)(68,114)(69,115)(70,116)(71,117)(72,118)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,97)(80,98)(81,93)(82,94)(83,95)(84,96)(85,89)(86,90)(87,91)(88,92), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,37,58,86,5,33,62,82)(2,19,59,91,6,23,63,95)(3,39,60,88,7,35,64,84)(4,21,61,93,8,17,57,89)(9,94,123,18,13,90,127,22)(10,83,124,38,14,87,128,34)(11,96,125,20,15,92,121,24)(12,85,126,40,16,81,122,36)(25,107,101,119,29,111,97,115)(26,54,102,66,30,50,98,70)(27,109,103,113,31,105,99,117)(28,56,104,68,32,52,100,72)(41,53,75,65,45,49,79,69)(42,108,76,120,46,112,80,116)(43,55,77,67,47,51,73,71)(44,110,78,114,48,106,74,118), (1,78,127,100)(2,77,128,99)(3,76,121,98)(4,75,122,97)(5,74,123,104)(6,73,124,103)(7,80,125,102)(8,79,126,101)(9,32,58,44)(10,31,59,43)(11,30,60,42)(12,29,61,41)(13,28,62,48)(14,27,63,47)(15,26,64,46)(16,25,57,45)(17,49,40,107)(18,56,33,106)(19,55,34,105)(20,54,35,112)(21,53,36,111)(22,52,37,110)(23,51,38,109)(24,50,39,108)(65,81,115,89)(66,88,116,96)(67,87,117,95)(68,86,118,94)(69,85,119,93)(70,84,120,92)(71,83,113,91)(72,82,114,90) );

G=PermutationGroup([[(1,123),(2,124),(3,125),(4,126),(5,127),(6,128),(7,121),(8,122),(9,62),(10,63),(11,64),(12,57),(13,58),(14,59),(15,60),(16,61),(17,36),(18,37),(19,38),(20,39),(21,40),(22,33),(23,34),(24,35),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48),(49,111),(50,112),(51,105),(52,106),(53,107),(54,108),(55,109),(56,110),(65,119),(66,120),(67,113),(68,114),(69,115),(70,116),(71,117),(72,118),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104),(79,97),(80,98),(81,93),(82,94),(83,95),(84,96),(85,89),(86,90),(87,91),(88,92)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,37,58,86,5,33,62,82),(2,19,59,91,6,23,63,95),(3,39,60,88,7,35,64,84),(4,21,61,93,8,17,57,89),(9,94,123,18,13,90,127,22),(10,83,124,38,14,87,128,34),(11,96,125,20,15,92,121,24),(12,85,126,40,16,81,122,36),(25,107,101,119,29,111,97,115),(26,54,102,66,30,50,98,70),(27,109,103,113,31,105,99,117),(28,56,104,68,32,52,100,72),(41,53,75,65,45,49,79,69),(42,108,76,120,46,112,80,116),(43,55,77,67,47,51,73,71),(44,110,78,114,48,106,74,118)], [(1,78,127,100),(2,77,128,99),(3,76,121,98),(4,75,122,97),(5,74,123,104),(6,73,124,103),(7,80,125,102),(8,79,126,101),(9,32,58,44),(10,31,59,43),(11,30,60,42),(12,29,61,41),(13,28,62,48),(14,27,63,47),(15,26,64,46),(16,25,57,45),(17,49,40,107),(18,56,33,106),(19,55,34,105),(20,54,35,112),(21,53,36,111),(22,52,37,110),(23,51,38,109),(24,50,39,108),(65,81,115,89),(66,88,116,96),(67,87,117,95),(68,86,118,94),(69,85,119,93),(70,84,120,92),(71,83,113,91),(72,82,114,90)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim111111222224
type++++++++--+
imageC1C2C2C2C2C2D4D4Q8Q16C4○D4C8⋊C22
kernel(C2×C8).60D4C22.7C42C429C4C23.67C23C2×Q8⋊C4C2×C2.D8C2×C8C22×C4C2×Q8C2×C4C2×C4C22
# reps111122422862

Matrix representation of (C2×C8).60D4 in GL6(𝔽17)

1600000
0160000
001000
000100
000010
000001
,
710000
1100000
0061100
003000
0000160
0000016
,
1670000
710000
0011600
0014000
000040
00001313
,
010000
1600000
004000
0041300
0000139
000044

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,1,0,0,0,0,1,10,0,0,0,0,0,0,6,3,0,0,0,0,11,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,7,0,0,0,0,7,1,0,0,0,0,0,0,11,14,0,0,0,0,6,0,0,0,0,0,0,0,4,13,0,0,0,0,0,13],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,4,4,0,0,0,0,0,13,0,0,0,0,0,0,13,4,0,0,0,0,9,4] >;

(C2×C8).60D4 in GAP, Magma, Sage, TeX

(C_2\times C_8)._{60}D_4
% in TeX

G:=Group("(C2xC8).60D4");
// GroupNames label

G:=SmallGroup(128,827);
// by ID

G=gap.SmallGroup(128,827);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,176,422,387,352,1018,521,248,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=1,c^4=b^4,d^2=a*b^4,c*b*c^-1=a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b^-1,d*c*d^-1=b^4*c^3>;
// generators/relations

׿
×
𝔽