p-group, metabelian, nilpotent (class 4), monomial
Aliases: C8.1Q16, C8.28SD16, (C2×C8).80D4, C8.C8.2C2, C42.47(C2×C4), C42.C2.3C4, C8.5Q8.5C2, (C4×C8).135C22, C4.4(Q8⋊C4), C2.3(C4.6Q16), C22.15(C4.D4), (C2×C4).61(C22⋊C4), SmallGroup(128,98)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.1Q16
G = < a,b,c | a8=1, b8=a4, c2=a2b4, bab-1=a3, cac-1=a-1, cbc-1=a-1b7 >
Character table of C8.1Q16
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | -i | -i | i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | √2 | 0 | -√2 | 0 | 0 | √2 | -√2 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | √2 | 0 | -√2 | √2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | -√2 | 0 | √2 | -√2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | -√2 | 0 | √2 | 0 | 0 | -√2 | √2 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | √-2 | 0 | √-2 | 0 | 0 | -√-2 | -√-2 | 0 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | √-2 | 0 | √-2 | -√-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | -√-2 | 0 | -√-2 | 0 | 0 | √-2 | √-2 | 0 | complex lifted from SD16 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | -√-2 | 0 | -√-2 | √-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 2√2 | 2√-2 | -2√2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -2√2 | -2√-2 | 2√2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -2√2 | 2√-2 | 2√2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 2√2 | -2√-2 | -2√2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 22 13 18 9 30 5 26)(2 19 6 23 10 27 14 31)(3 24 15 20 11 32 7 28)(4 21 8 25 12 29 16 17)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 25 10 17)(3 7)(4 31 12 23)(5 13)(6 21 14 29)(8 27 16 19)(11 15)(18 30)(22 26)(24 32)
G:=sub<Sym(32)| (1,22,13,18,9,30,5,26)(2,19,6,23,10,27,14,31)(3,24,15,20,11,32,7,28)(4,21,8,25,12,29,16,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,25,10,17)(3,7)(4,31,12,23)(5,13)(6,21,14,29)(8,27,16,19)(11,15)(18,30)(22,26)(24,32)>;
G:=Group( (1,22,13,18,9,30,5,26)(2,19,6,23,10,27,14,31)(3,24,15,20,11,32,7,28)(4,21,8,25,12,29,16,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,25,10,17)(3,7)(4,31,12,23)(5,13)(6,21,14,29)(8,27,16,19)(11,15)(18,30)(22,26)(24,32) );
G=PermutationGroup([[(1,22,13,18,9,30,5,26),(2,19,6,23,10,27,14,31),(3,24,15,20,11,32,7,28),(4,21,8,25,12,29,16,17)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,25,10,17),(3,7),(4,31,12,23),(5,13),(6,21,14,29),(8,27,16,19),(11,15),(18,30),(22,26),(24,32)]])
Matrix representation of C8.1Q16 ►in GL4(𝔽17) generated by
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 14 | 14 |
0 | 0 | 3 | 14 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 5 | 0 | 0 |
12 | 12 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 4 |
G:=sub<GL(4,GF(17))| [3,3,0,0,14,3,0,0,0,0,14,3,0,0,14,14],[0,0,12,12,0,0,5,12,1,0,0,0,0,1,0,0],[1,0,0,0,0,16,0,0,0,0,13,0,0,0,0,4] >;
C8.1Q16 in GAP, Magma, Sage, TeX
C_8._1Q_{16}
% in TeX
G:=Group("C8.1Q16");
// GroupNames label
G:=SmallGroup(128,98);
// by ID
G=gap.SmallGroup(128,98);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,232,422,387,520,794,192,2804,1411,172,4037]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^8=a^4,c^2=a^2*b^4,b*a*b^-1=a^3,c*a*c^-1=a^-1,c*b*c^-1=a^-1*b^7>;
// generators/relations
Export
Subgroup lattice of C8.1Q16 in TeX
Character table of C8.1Q16 in TeX