extension | φ:Q→Aut N | d | ρ | Label | ID |
C8⋊1SD16 = C8⋊SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8:1SD16 | 128,418 |
C8⋊2SD16 = C8⋊2SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8:2SD16 | 128,420 |
C8⋊3SD16 = C8⋊3SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8:3SD16 | 128,423 |
C8⋊4SD16 = C8⋊4SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8:4SD16 | 128,425 |
C8⋊5SD16 = C8⋊5SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8:5SD16 | 128,446 |
C8⋊6SD16 = C8⋊6SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8:6SD16 | 128,447 |
C8⋊7SD16 = C8⋊5D8 | φ: SD16/C8 → C2 ⊆ Aut C8 | 64 | | C8:7SD16 | 128,438 |
C8⋊8SD16 = C8⋊8SD16 | φ: SD16/C8 → C2 ⊆ Aut C8 | 64 | | C8:8SD16 | 128,437 |
C8⋊9SD16 = C8⋊9SD16 | φ: SD16/C8 → C2 ⊆ Aut C8 | 64 | | C8:9SD16 | 128,322 |
C8⋊10SD16 = C8⋊10SD16 | φ: SD16/D4 → C2 ⊆ Aut C8 | 64 | | C8:10SD16 | 128,405 |
C8⋊11SD16 = C8⋊11SD16 | φ: SD16/D4 → C2 ⊆ Aut C8 | 64 | | C8:11SD16 | 128,403 |
C8⋊12SD16 = C8⋊12SD16 | φ: SD16/D4 → C2 ⊆ Aut C8 | 64 | | C8:12SD16 | 128,314 |
C8⋊13SD16 = C8⋊13SD16 | φ: SD16/Q8 → C2 ⊆ Aut C8 | 64 | | C8:13SD16 | 128,400 |
C8⋊14SD16 = C8⋊14SD16 | φ: SD16/Q8 → C2 ⊆ Aut C8 | 64 | | C8:14SD16 | 128,398 |
C8⋊15SD16 = C8⋊15SD16 | φ: SD16/Q8 → C2 ⊆ Aut C8 | 64 | | C8:15SD16 | 128,315 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C8.1SD16 = C8.24D8 | φ: SD16/C4 → C22 ⊆ Aut C8 | 16 | 4+ | C8.1SD16 | 128,89 |
C8.2SD16 = C8.25D8 | φ: SD16/C4 → C22 ⊆ Aut C8 | 32 | 4- | C8.2SD16 | 128,90 |
C8.3SD16 = C8.29D8 | φ: SD16/C4 → C22 ⊆ Aut C8 | 16 | 4 | C8.3SD16 | 128,91 |
C8.4SD16 = D16⋊3C4 | φ: SD16/C4 → C22 ⊆ Aut C8 | 32 | 4 | C8.4SD16 | 128,150 |
C8.5SD16 = M6(2)⋊C2 | φ: SD16/C4 → C22 ⊆ Aut C8 | 32 | 4+ | C8.5SD16 | 128,151 |
C8.6SD16 = C16.18D4 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | 4- | C8.6SD16 | 128,152 |
C8.7SD16 = C8.SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 128 | | C8.7SD16 | 128,422 |
C8.8SD16 = C8.8SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8.8SD16 | 128,427 |
C8.9SD16 = C8.9SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 128 | | C8.9SD16 | 128,448 |
C8.10SD16 = D8⋊3Q8 | φ: SD16/C4 → C22 ⊆ Aut C8 | 16 | 4 | C8.10SD16 | 128,962 |
C8.11SD16 = D8.2Q8 | φ: SD16/C4 → C22 ⊆ Aut C8 | 32 | 4 | C8.11SD16 | 128,963 |
C8.12SD16 = C8.12SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8.12SD16 | 128,975 |
C8.13SD16 = C8.13SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 64 | | C8.13SD16 | 128,976 |
C8.14SD16 = C8.14SD16 | φ: SD16/C4 → C22 ⊆ Aut C8 | 128 | | C8.14SD16 | 128,977 |
C8.15SD16 = D16⋊2C4 | φ: SD16/C8 → C2 ⊆ Aut C8 | 64 | | C8.15SD16 | 128,147 |
C8.16SD16 = Q32⋊2C4 | φ: SD16/C8 → C2 ⊆ Aut C8 | 128 | | C8.16SD16 | 128,148 |
C8.17SD16 = C8⋊5Q16 | φ: SD16/C8 → C2 ⊆ Aut C8 | 128 | | C8.17SD16 | 128,439 |
C8.18SD16 = C4.4D16 | φ: SD16/C8 → C2 ⊆ Aut C8 | 64 | | C8.18SD16 | 128,972 |
C8.19SD16 = C4.SD32 | φ: SD16/C8 → C2 ⊆ Aut C8 | 128 | | C8.19SD16 | 128,973 |
C8.20SD16 = D16.C4 | φ: SD16/C8 → C2 ⊆ Aut C8 | 64 | 2 | C8.20SD16 | 128,149 |
C8.21SD16 = C82⋊12C2 | φ: SD16/C8 → C2 ⊆ Aut C8 | 64 | | C8.21SD16 | 128,440 |
C8.22SD16 = C8.22SD16 | φ: SD16/C8 → C2 ⊆ Aut C8 | 64 | | C8.22SD16 | 128,974 |
C8.23SD16 = C8≀C2 | φ: SD16/C8 → C2 ⊆ Aut C8 | 16 | 2 | C8.23SD16 | 128,67 |
C8.24SD16 = C4.10D16 | φ: SD16/D4 → C2 ⊆ Aut C8 | 128 | | C8.24SD16 | 128,96 |
C8.25SD16 = C4.6Q32 | φ: SD16/D4 → C2 ⊆ Aut C8 | 128 | | C8.25SD16 | 128,97 |
C8.26SD16 = D4.1Q16 | φ: SD16/D4 → C2 ⊆ Aut C8 | 64 | | C8.26SD16 | 128,407 |
C8.27SD16 = C8.16Q16 | φ: SD16/D4 → C2 ⊆ Aut C8 | 128 | | C8.27SD16 | 128,95 |
C8.28SD16 = C8.1Q16 | φ: SD16/D4 → C2 ⊆ Aut C8 | 32 | 4 | C8.28SD16 | 128,98 |
C8.29SD16 = C8.32D8 | φ: SD16/D4 → C2 ⊆ Aut C8 | 16 | 4 | C8.29SD16 | 128,68 |
C8.30SD16 = C8.17Q16 | φ: SD16/D4 → C2 ⊆ Aut C8 | 128 | | C8.30SD16 | 128,70 |
C8.31SD16 = C16.C8 | φ: SD16/D4 → C2 ⊆ Aut C8 | 32 | 4 | C8.31SD16 | 128,101 |
C8.32SD16 = C4.D16 | φ: SD16/Q8 → C2 ⊆ Aut C8 | 64 | | C8.32SD16 | 128,93 |
C8.33SD16 = C8.27D8 | φ: SD16/Q8 → C2 ⊆ Aut C8 | 128 | | C8.33SD16 | 128,94 |
C8.34SD16 = Q8⋊1Q16 | φ: SD16/Q8 → C2 ⊆ Aut C8 | 128 | | C8.34SD16 | 128,402 |
C8.35SD16 = C8.30D8 | φ: SD16/Q8 → C2 ⊆ Aut C8 | 64 | | C8.35SD16 | 128,92 |
C8.36SD16 = C8.31D8 | φ: SD16/Q8 → C2 ⊆ Aut C8 | 64 | | C8.36SD16 | 128,62 |
C8.37SD16 = D4⋊C16 | central extension (φ=1) | 64 | | C8.37SD16 | 128,61 |
C8.38SD16 = Q8⋊C16 | central extension (φ=1) | 128 | | C8.38SD16 | 128,69 |
C8.39SD16 = C8⋊2C16 | central extension (φ=1) | 128 | | C8.39SD16 | 128,99 |