Extensions 1→N→G→Q→1 with N=C8 and Q=SD16

Direct product G=N×Q with N=C8 and Q=SD16
dρLabelID
C8×SD1664C8xSD16128,308

Semidirect products G=N:Q with N=C8 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C81SD16 = C8⋊SD16φ: SD16/C4C22 ⊆ Aut C864C8:1SD16128,418
C82SD16 = C82SD16φ: SD16/C4C22 ⊆ Aut C864C8:2SD16128,420
C83SD16 = C83SD16φ: SD16/C4C22 ⊆ Aut C864C8:3SD16128,423
C84SD16 = C84SD16φ: SD16/C4C22 ⊆ Aut C864C8:4SD16128,425
C85SD16 = C85SD16φ: SD16/C4C22 ⊆ Aut C864C8:5SD16128,446
C86SD16 = C86SD16φ: SD16/C4C22 ⊆ Aut C864C8:6SD16128,447
C87SD16 = C85D8φ: SD16/C8C2 ⊆ Aut C864C8:7SD16128,438
C88SD16 = C88SD16φ: SD16/C8C2 ⊆ Aut C864C8:8SD16128,437
C89SD16 = C89SD16φ: SD16/C8C2 ⊆ Aut C864C8:9SD16128,322
C810SD16 = C810SD16φ: SD16/D4C2 ⊆ Aut C864C8:10SD16128,405
C811SD16 = C811SD16φ: SD16/D4C2 ⊆ Aut C864C8:11SD16128,403
C812SD16 = C812SD16φ: SD16/D4C2 ⊆ Aut C864C8:12SD16128,314
C813SD16 = C813SD16φ: SD16/Q8C2 ⊆ Aut C864C8:13SD16128,400
C814SD16 = C814SD16φ: SD16/Q8C2 ⊆ Aut C864C8:14SD16128,398
C815SD16 = C815SD16φ: SD16/Q8C2 ⊆ Aut C864C8:15SD16128,315

Non-split extensions G=N.Q with N=C8 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C8.1SD16 = C8.24D8φ: SD16/C4C22 ⊆ Aut C8164+C8.1SD16128,89
C8.2SD16 = C8.25D8φ: SD16/C4C22 ⊆ Aut C8324-C8.2SD16128,90
C8.3SD16 = C8.29D8φ: SD16/C4C22 ⊆ Aut C8164C8.3SD16128,91
C8.4SD16 = D163C4φ: SD16/C4C22 ⊆ Aut C8324C8.4SD16128,150
C8.5SD16 = M6(2)⋊C2φ: SD16/C4C22 ⊆ Aut C8324+C8.5SD16128,151
C8.6SD16 = C16.18D4φ: SD16/C4C22 ⊆ Aut C8644-C8.6SD16128,152
C8.7SD16 = C8.SD16φ: SD16/C4C22 ⊆ Aut C8128C8.7SD16128,422
C8.8SD16 = C8.8SD16φ: SD16/C4C22 ⊆ Aut C864C8.8SD16128,427
C8.9SD16 = C8.9SD16φ: SD16/C4C22 ⊆ Aut C8128C8.9SD16128,448
C8.10SD16 = D83Q8φ: SD16/C4C22 ⊆ Aut C8164C8.10SD16128,962
C8.11SD16 = D8.2Q8φ: SD16/C4C22 ⊆ Aut C8324C8.11SD16128,963
C8.12SD16 = C8.12SD16φ: SD16/C4C22 ⊆ Aut C864C8.12SD16128,975
C8.13SD16 = C8.13SD16φ: SD16/C4C22 ⊆ Aut C864C8.13SD16128,976
C8.14SD16 = C8.14SD16φ: SD16/C4C22 ⊆ Aut C8128C8.14SD16128,977
C8.15SD16 = D162C4φ: SD16/C8C2 ⊆ Aut C864C8.15SD16128,147
C8.16SD16 = Q322C4φ: SD16/C8C2 ⊆ Aut C8128C8.16SD16128,148
C8.17SD16 = C85Q16φ: SD16/C8C2 ⊆ Aut C8128C8.17SD16128,439
C8.18SD16 = C4.4D16φ: SD16/C8C2 ⊆ Aut C864C8.18SD16128,972
C8.19SD16 = C4.SD32φ: SD16/C8C2 ⊆ Aut C8128C8.19SD16128,973
C8.20SD16 = D16.C4φ: SD16/C8C2 ⊆ Aut C8642C8.20SD16128,149
C8.21SD16 = C8212C2φ: SD16/C8C2 ⊆ Aut C864C8.21SD16128,440
C8.22SD16 = C8.22SD16φ: SD16/C8C2 ⊆ Aut C864C8.22SD16128,974
C8.23SD16 = C8≀C2φ: SD16/C8C2 ⊆ Aut C8162C8.23SD16128,67
C8.24SD16 = C4.10D16φ: SD16/D4C2 ⊆ Aut C8128C8.24SD16128,96
C8.25SD16 = C4.6Q32φ: SD16/D4C2 ⊆ Aut C8128C8.25SD16128,97
C8.26SD16 = D4.1Q16φ: SD16/D4C2 ⊆ Aut C864C8.26SD16128,407
C8.27SD16 = C8.16Q16φ: SD16/D4C2 ⊆ Aut C8128C8.27SD16128,95
C8.28SD16 = C8.1Q16φ: SD16/D4C2 ⊆ Aut C8324C8.28SD16128,98
C8.29SD16 = C8.32D8φ: SD16/D4C2 ⊆ Aut C8164C8.29SD16128,68
C8.30SD16 = C8.17Q16φ: SD16/D4C2 ⊆ Aut C8128C8.30SD16128,70
C8.31SD16 = C16.C8φ: SD16/D4C2 ⊆ Aut C8324C8.31SD16128,101
C8.32SD16 = C4.D16φ: SD16/Q8C2 ⊆ Aut C864C8.32SD16128,93
C8.33SD16 = C8.27D8φ: SD16/Q8C2 ⊆ Aut C8128C8.33SD16128,94
C8.34SD16 = Q81Q16φ: SD16/Q8C2 ⊆ Aut C8128C8.34SD16128,402
C8.35SD16 = C8.30D8φ: SD16/Q8C2 ⊆ Aut C864C8.35SD16128,92
C8.36SD16 = C8.31D8φ: SD16/Q8C2 ⊆ Aut C864C8.36SD16128,62
C8.37SD16 = D4⋊C16central extension (φ=1)64C8.37SD16128,61
C8.38SD16 = Q8⋊C16central extension (φ=1)128C8.38SD16128,69
C8.39SD16 = C82C16central extension (φ=1)128C8.39SD16128,99

׿
×
𝔽