p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.6Q16, C4.7SD16, C42.5C22, C4⋊C8.3C2, C4⋊Q8.2C2, (C2×Q8).2C4, (C2×C4).110D4, C2.5(Q8⋊C4), C2.5(C4.D4), C22.41(C22⋊C4), (C2×C4).14(C2×C4), SmallGroup(64,14)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.6Q16
G = < a,b,c | a4=b8=1, c2=a2b4, bab-1=cac-1=a-1, cbc-1=a-1b-1 >
Character table of C4.6Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | -i | i | i | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | i | i | -i | -i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | -i | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | 0 | 0 | √2 | √2 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | 0 | 0 | √2 | √2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | 0 | 0 | -√2 | -√2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | 0 | 0 | -√2 | -√2 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | -√-2 | √-2 | 0 | complex lifted from SD16 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | √-2 | -√-2 | 0 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | √-2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -√-2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
(1 25 11 45)(2 46 12 26)(3 27 13 47)(4 48 14 28)(5 29 15 41)(6 42 16 30)(7 31 9 43)(8 44 10 32)(17 35 61 55)(18 56 62 36)(19 37 63 49)(20 50 64 38)(21 39 57 51)(22 52 58 40)(23 33 59 53)(24 54 60 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 19 15 59)(2 56 16 40)(3 17 9 57)(4 54 10 38)(5 23 11 63)(6 52 12 36)(7 21 13 61)(8 50 14 34)(18 30 58 46)(20 28 60 44)(22 26 62 42)(24 32 64 48)(25 49 41 33)(27 55 43 39)(29 53 45 37)(31 51 47 35)
G:=sub<Sym(64)| (1,25,11,45)(2,46,12,26)(3,27,13,47)(4,48,14,28)(5,29,15,41)(6,42,16,30)(7,31,9,43)(8,44,10,32)(17,35,61,55)(18,56,62,36)(19,37,63,49)(20,50,64,38)(21,39,57,51)(22,52,58,40)(23,33,59,53)(24,54,60,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,15,59)(2,56,16,40)(3,17,9,57)(4,54,10,38)(5,23,11,63)(6,52,12,36)(7,21,13,61)(8,50,14,34)(18,30,58,46)(20,28,60,44)(22,26,62,42)(24,32,64,48)(25,49,41,33)(27,55,43,39)(29,53,45,37)(31,51,47,35)>;
G:=Group( (1,25,11,45)(2,46,12,26)(3,27,13,47)(4,48,14,28)(5,29,15,41)(6,42,16,30)(7,31,9,43)(8,44,10,32)(17,35,61,55)(18,56,62,36)(19,37,63,49)(20,50,64,38)(21,39,57,51)(22,52,58,40)(23,33,59,53)(24,54,60,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,15,59)(2,56,16,40)(3,17,9,57)(4,54,10,38)(5,23,11,63)(6,52,12,36)(7,21,13,61)(8,50,14,34)(18,30,58,46)(20,28,60,44)(22,26,62,42)(24,32,64,48)(25,49,41,33)(27,55,43,39)(29,53,45,37)(31,51,47,35) );
G=PermutationGroup([[(1,25,11,45),(2,46,12,26),(3,27,13,47),(4,48,14,28),(5,29,15,41),(6,42,16,30),(7,31,9,43),(8,44,10,32),(17,35,61,55),(18,56,62,36),(19,37,63,49),(20,50,64,38),(21,39,57,51),(22,52,58,40),(23,33,59,53),(24,54,60,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,19,15,59),(2,56,16,40),(3,17,9,57),(4,54,10,38),(5,23,11,63),(6,52,12,36),(7,21,13,61),(8,50,14,34),(18,30,58,46),(20,28,60,44),(22,26,62,42),(24,32,64,48),(25,49,41,33),(27,55,43,39),(29,53,45,37),(31,51,47,35)]])
C4.6Q16 is a maximal subgroup of
C42.4D4 C42.410D4 C42.411D4 C42.415D4 C42.79D4 C42.80D4 C42.418D4 C42.85D4 C42.86D4 C42.87D4 D4⋊SD16 Q8⋊SD16 C42.185C23 D4⋊Q16 Q8⋊Q16 C42.195C23 D4.5SD16 D4⋊3Q16 Q8⋊3Q16 C42.207C23 C8⋊11SD16 C8⋊8Q16 D4.1Q16 D4.2SD16 Q8.2SD16 D4.Q16 Q8.2Q16 C8⋊3SD16 C8⋊Q16 C8.8SD16 C42.248C23 C42.249C23 C42.254C23 C42.255C23 Dic5.Q16
C4p.Q16: Q8.1Q16 C8.3Q16 C4.Dic12 C12.5Q16 C4.Dic20 C20.5Q16 C4.Dic28 C28.5Q16 ...
C4.6Q16 is a maximal quotient of
(C2×Q8)⋊C8 C42.8Q8 Dic5.Q16
C4p.Q16: C8.1Q16 C4.Dic12 C12.5Q16 C4.Dic20 C20.5Q16 C4.Dic28 C28.5Q16 ...
Matrix representation of C4.6Q16 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
10 | 16 | 0 | 0 |
16 | 7 | 0 | 0 |
0 | 0 | 5 | 12 |
0 | 0 | 5 | 5 |
1 | 7 | 0 | 0 |
7 | 16 | 0 | 0 |
0 | 0 | 10 | 1 |
0 | 0 | 1 | 7 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,16,0,0,0,0,16],[10,16,0,0,16,7,0,0,0,0,5,5,0,0,12,5],[1,7,0,0,7,16,0,0,0,0,10,1,0,0,1,7] >;
C4.6Q16 in GAP, Magma, Sage, TeX
C_4._6Q_{16}
% in TeX
G:=Group("C4.6Q16");
// GroupNames label
G:=SmallGroup(64,14);
// by ID
G=gap.SmallGroup(64,14);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,2,48,73,199,362,332,158,681,165]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^2=a^2*b^4,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^-1*b^-1>;
// generators/relations
Export
Subgroup lattice of C4.6Q16 in TeX
Character table of C4.6Q16 in TeX