Copied to
clipboard

G = 2- 1+45C4order 128 = 27

4th semidirect product of 2- 1+4 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: 2- 1+45C4, 2+ 1+46C4, C42.671C23, M4(2).26C23, D4C4≀C2, Q8C4≀C2, C4○D4.57D4, C4≀C216C22, (C2×D4).291D4, C4.12(C23×C4), (C2×Q8).226D4, Q8○M4(2)⋊13C2, (C2×C4).182C24, (C2×C42)⋊35C22, C4○D4.21C23, D4.23(C22×C4), C4.182(C22×D4), C23.229(C2×D4), Q8.23(C22×C4), D4.21(C22⋊C4), C2.C25.3C2, Q8.21(C22⋊C4), C22.29(C22×D4), C42⋊C277C22, C42⋊C2219C2, (C2×M4(2))⋊43C22, (C22×C4).904C23, C4○D4C4≀C2, C4○D43(C2×C4), (C4×C4○D4)⋊2C2, (C2×C4≀C2)⋊30C2, (C2×D4)⋊25(C2×C4), (C2×Q8)⋊19(C2×C4), (C2×C4).448(C2×D4), C4.35(C2×C22⋊C4), (C2×C4).64(C22×C4), C22.8(C2×C22⋊C4), (C2×C4○D4).86C22, C2.44(C22×C22⋊C4), SmallGroup(128,1633)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — 2- 1+45C4
C1C2C4C2×C4C22×C4C2×C4○D4C2.C25 — 2- 1+45C4
C1C2C4 — 2- 1+45C4
C1C4C2×C4○D4 — 2- 1+45C4
C1C2C2C2×C4 — 2- 1+45C4

Generators and relations for 2- 1+45C4
 G = < a,b,c,d,e | a4=b2=d2=e4=1, c2=a2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=a2c, ce=ec, ede-1=a2cd >

Subgroups: 636 in 369 conjugacy classes, 170 normal (13 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C4≀C2, C2×C42, C42⋊C2, C4×D4, C4×Q8, C2×M4(2), C8○D4, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, 2+ 1+4, 2- 1+4, 2- 1+4, C2×C4≀C2, C42⋊C22, C4×C4○D4, Q8○M4(2), C2.C25, 2- 1+45C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C23×C4, C22×D4, C22×C22⋊C4, 2- 1+45C4

Permutation representations of 2- 1+45C4
On 16 points - transitive group 16T207
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 3)(5 7)(10 12)(13 15)
(1 10 3 12)(2 11 4 9)(5 15 7 13)(6 16 8 14)
(1 5)(2 6)(3 7)(4 8)(9 16)(10 13)(11 14)(12 15)
(1 10 3 12)(2 11 4 9)(5 7)(6 8)(13 15)(14 16)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,3)(5,7)(10,12)(13,15), (1,10,3,12)(2,11,4,9)(5,15,7,13)(6,16,8,14), (1,5)(2,6)(3,7)(4,8)(9,16)(10,13)(11,14)(12,15), (1,10,3,12)(2,11,4,9)(5,7)(6,8)(13,15)(14,16)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,3)(5,7)(10,12)(13,15), (1,10,3,12)(2,11,4,9)(5,15,7,13)(6,16,8,14), (1,5)(2,6)(3,7)(4,8)(9,16)(10,13)(11,14)(12,15), (1,10,3,12)(2,11,4,9)(5,7)(6,8)(13,15)(14,16) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,3),(5,7),(10,12),(13,15)], [(1,10,3,12),(2,11,4,9),(5,15,7,13),(6,16,8,14)], [(1,5),(2,6),(3,7),(4,8),(9,16),(10,13),(11,14),(12,15)], [(1,10,3,12),(2,11,4,9),(5,7),(6,8),(13,15),(14,16)]])

G:=TransitiveGroup(16,207);

44 conjugacy classes

class 1 2A2B···2H2I2J2K2L4A4B4C···4M4N···4W8A···8H
order122···22222444···44···48···8
size112···24444112···24···44···4

44 irreducible representations

dim111111112224
type+++++++++
imageC1C2C2C2C2C2C4C4D4D4D42- 1+45C4
kernel2- 1+45C4C2×C4≀C2C42⋊C22C4×C4○D4Q8○M4(2)C2.C252+ 1+42- 1+4C2×D4C2×Q8C4○D4C1
# reps166111883144

Matrix representation of 2- 1+45C4 in GL4(𝔽5) generated by

2000
0300
0020
0003
,
0400
4000
0002
0030
,
2000
0200
0030
0003
,
0020
0001
3000
0100
,
3000
0300
0010
0001
G:=sub<GL(4,GF(5))| [2,0,0,0,0,3,0,0,0,0,2,0,0,0,0,3],[0,4,0,0,4,0,0,0,0,0,0,3,0,0,2,0],[2,0,0,0,0,2,0,0,0,0,3,0,0,0,0,3],[0,0,3,0,0,0,0,1,2,0,0,0,0,1,0,0],[3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1] >;

2- 1+45C4 in GAP, Magma, Sage, TeX

2_-^{1+4}\rtimes_5C_4
% in TeX

G:=Group("ES-(2,2):5C4");
// GroupNames label

G:=SmallGroup(128,1633);
// by ID

G=gap.SmallGroup(128,1633);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,521,2804,1411,172,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=d^2=e^4=1,c^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*c,c*e=e*c,e*d*e^-1=a^2*c*d>;
// generators/relations

׿
×
𝔽