extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10).1D4 = D20⋊7C4 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).1D4 | 160,32 |
(C2×C10).2D4 = C23⋊Dic5 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).2D4 | 160,41 |
(C2×C10).3D4 = D4⋊2Dic5 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).3D4 | 160,44 |
(C2×C10).4D4 = C22.D20 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 80 | | (C2xC10).4D4 | 160,107 |
(C2×C10).5D4 = C8⋊D10 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 40 | 4+ | (C2xC10).5D4 | 160,129 |
(C2×C10).6D4 = C8.D10 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 80 | 4- | (C2xC10).6D4 | 160,130 |
(C2×C10).7D4 = C23.18D10 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 80 | | (C2xC10).7D4 | 160,156 |
(C2×C10).8D4 = D4⋊D10 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 40 | 4+ | (C2xC10).8D4 | 160,170 |
(C2×C10).9D4 = D4.8D10 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 80 | 4 | (C2xC10).9D4 | 160,171 |
(C2×C10).10D4 = D4.9D10 | φ: D4/C2 → C22 ⊆ Aut C2×C10 | 80 | 4- | (C2xC10).10D4 | 160,172 |
(C2×C10).11D4 = C5×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 80 | 2 | (C2xC10).11D4 | 160,196 |
(C2×C10).12D4 = C20.44D4 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).12D4 | 160,23 |
(C2×C10).13D4 = C40⋊6C4 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).13D4 | 160,24 |
(C2×C10).14D4 = C40⋊5C4 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).14D4 | 160,25 |
(C2×C10).15D4 = D20⋊5C4 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).15D4 | 160,28 |
(C2×C10).16D4 = C2×C40⋊C2 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).16D4 | 160,123 |
(C2×C10).17D4 = C2×D40 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).17D4 | 160,124 |
(C2×C10).18D4 = D40⋊7C2 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 80 | 2 | (C2xC10).18D4 | 160,125 |
(C2×C10).19D4 = C2×Dic20 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).19D4 | 160,126 |
(C2×C10).20D4 = C2×C4⋊Dic5 | φ: D4/C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).20D4 | 160,146 |
(C2×C10).21D4 = C5×C23⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).21D4 | 160,49 |
(C2×C10).22D4 = C5×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 40 | 2 | (C2xC10).22D4 | 160,54 |
(C2×C10).23D4 = C5×C22.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).23D4 | 160,184 |
(C2×C10).24D4 = C5×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).24D4 | 160,197 |
(C2×C10).25D4 = C5×C8.C22 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | 4 | (C2xC10).25D4 | 160,198 |
(C2×C10).26D4 = D20⋊4C4 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 40 | 2 | (C2xC10).26D4 | 160,12 |
(C2×C10).27D4 = C23.1D10 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).27D4 | 160,13 |
(C2×C10).28D4 = C10.D8 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).28D4 | 160,14 |
(C2×C10).29D4 = C20.Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).29D4 | 160,15 |
(C2×C10).30D4 = D20⋊6C4 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).30D4 | 160,16 |
(C2×C10).31D4 = C10.Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).31D4 | 160,17 |
(C2×C10).32D4 = C10.10C42 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).32D4 | 160,38 |
(C2×C10).33D4 = D4⋊Dic5 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).33D4 | 160,39 |
(C2×C10).34D4 = Q8⋊Dic5 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).34D4 | 160,42 |
(C2×C10).35D4 = C2×C10.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).35D4 | 160,144 |
(C2×C10).36D4 = C2×D10⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).36D4 | 160,148 |
(C2×C10).37D4 = C23.23D10 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).37D4 | 160,150 |
(C2×C10).38D4 = C2×D4⋊D5 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).38D4 | 160,152 |
(C2×C10).39D4 = D4.D10 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).39D4 | 160,153 |
(C2×C10).40D4 = C2×D4.D5 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).40D4 | 160,154 |
(C2×C10).41D4 = C2×Q8⋊D5 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).41D4 | 160,162 |
(C2×C10).42D4 = C20.C23 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | 4 | (C2xC10).42D4 | 160,163 |
(C2×C10).43D4 = C2×C5⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).43D4 | 160,164 |
(C2×C10).44D4 = C2×C23.D5 | φ: D4/C22 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).44D4 | 160,173 |
(C2×C10).45D4 = C5×C2.C42 | central extension (φ=1) | 160 | | (C2xC10).45D4 | 160,45 |
(C2×C10).46D4 = C5×D4⋊C4 | central extension (φ=1) | 80 | | (C2xC10).46D4 | 160,52 |
(C2×C10).47D4 = C5×Q8⋊C4 | central extension (φ=1) | 160 | | (C2xC10).47D4 | 160,53 |
(C2×C10).48D4 = C5×C4.Q8 | central extension (φ=1) | 160 | | (C2xC10).48D4 | 160,56 |
(C2×C10).49D4 = C5×C2.D8 | central extension (φ=1) | 160 | | (C2xC10).49D4 | 160,57 |
(C2×C10).50D4 = C10×C22⋊C4 | central extension (φ=1) | 80 | | (C2xC10).50D4 | 160,176 |
(C2×C10).51D4 = C10×C4⋊C4 | central extension (φ=1) | 160 | | (C2xC10).51D4 | 160,177 |
(C2×C10).52D4 = C10×D8 | central extension (φ=1) | 80 | | (C2xC10).52D4 | 160,193 |
(C2×C10).53D4 = C10×SD16 | central extension (φ=1) | 80 | | (C2xC10).53D4 | 160,194 |
(C2×C10).54D4 = C10×Q16 | central extension (φ=1) | 160 | | (C2xC10).54D4 | 160,195 |