Copied to
clipboard

?

G = C2×Q8.D6order 192 = 26·3

Direct product of C2 and Q8.D6

direct product, non-abelian, soluble

Aliases: C2×Q8.D6, C23.18S4, GL2(𝔽3)⋊1C22, CSU2(𝔽3)⋊1C22, SL2(𝔽3).2C23, (C2×Q8)⋊3D6, (C22×Q8)⋊4S3, C2.10(C22×S4), C22.27(C2×S4), Q8.2(C22×S3), (C2×GL2(𝔽3))⋊1C2, (C2×CSU2(𝔽3))⋊4C2, (C2×SL2(𝔽3))⋊5C22, (C22×SL2(𝔽3))⋊6C2, SmallGroup(192,1476)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — C2×Q8.D6
C1C2Q8SL2(𝔽3)GL2(𝔽3)C2×GL2(𝔽3) — C2×Q8.D6

Subgroups: 555 in 153 conjugacy classes, 29 normal (13 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×6], C22, C22 [×2], C22 [×6], S3 [×2], C6 [×5], C8 [×4], C2×C4 [×11], D4 [×7], Q8, Q8 [×7], C23, C23, Dic3 [×2], D6 [×4], C2×C6 [×5], C2×C8 [×2], M4(2) [×4], SD16 [×8], Q16 [×8], C22×C4 [×2], C2×D4 [×2], C2×Q8, C2×Q8 [×2], C2×Q8 [×4], C4○D4 [×6], SL2(𝔽3), C2×Dic3, C3⋊D4 [×4], C22×S3, C22×C6, C2×M4(2), C2×SD16 [×2], C2×Q16 [×2], C8.C22 [×8], C22×Q8, C2×C4○D4, CSU2(𝔽3) [×2], GL2(𝔽3) [×2], C2×SL2(𝔽3), C2×SL2(𝔽3) [×2], C2×C3⋊D4, C2×C8.C22, C2×CSU2(𝔽3), C2×GL2(𝔽3), Q8.D6 [×4], C22×SL2(𝔽3), C2×Q8.D6

Quotients:
C1, C2 [×7], C22 [×7], S3, C23, D6 [×3], S4, C22×S3, C2×S4 [×3], Q8.D6 [×2], C22×S4, C2×Q8.D6

Generators and relations
 G = < a,b,c,d,e | a2=b4=d6=1, c2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe-1=b-1, dbd-1=bc, dcd-1=b, ece-1=b-1c, ede-1=b2d-1 >

Smallest permutation representation
On 32 points
Generators in S32
(1 8)(2 7)(3 4)(5 6)(9 12)(10 13)(11 14)(15 28)(16 29)(17 30)(18 31)(19 32)(20 27)(21 24)(22 25)(23 26)
(1 28 7 18)(2 31 8 15)(3 23 6 13)(4 26 5 10)(9 11 25 21)(12 14 22 24)(16 30 32 20)(17 19 27 29)
(1 32 7 16)(2 29 8 19)(3 21 6 11)(4 24 5 14)(9 23 25 13)(10 12 26 22)(15 17 31 27)(18 20 28 30)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12 13 14)(15 16 17 18 19 20)(21 22 23 24 25 26)(27 28 29 30 31 32)
(1 6 7 3)(2 4 8 5)(9 32 25 16)(10 15 26 31)(11 30 21 20)(12 19 22 29)(13 28 23 18)(14 17 24 27)

G:=sub<Sym(32)| (1,8)(2,7)(3,4)(5,6)(9,12)(10,13)(11,14)(15,28)(16,29)(17,30)(18,31)(19,32)(20,27)(21,24)(22,25)(23,26), (1,28,7,18)(2,31,8,15)(3,23,6,13)(4,26,5,10)(9,11,25,21)(12,14,22,24)(16,30,32,20)(17,19,27,29), (1,32,7,16)(2,29,8,19)(3,21,6,11)(4,24,5,14)(9,23,25,13)(10,12,26,22)(15,17,31,27)(18,20,28,30), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20)(21,22,23,24,25,26)(27,28,29,30,31,32), (1,6,7,3)(2,4,8,5)(9,32,25,16)(10,15,26,31)(11,30,21,20)(12,19,22,29)(13,28,23,18)(14,17,24,27)>;

G:=Group( (1,8)(2,7)(3,4)(5,6)(9,12)(10,13)(11,14)(15,28)(16,29)(17,30)(18,31)(19,32)(20,27)(21,24)(22,25)(23,26), (1,28,7,18)(2,31,8,15)(3,23,6,13)(4,26,5,10)(9,11,25,21)(12,14,22,24)(16,30,32,20)(17,19,27,29), (1,32,7,16)(2,29,8,19)(3,21,6,11)(4,24,5,14)(9,23,25,13)(10,12,26,22)(15,17,31,27)(18,20,28,30), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20)(21,22,23,24,25,26)(27,28,29,30,31,32), (1,6,7,3)(2,4,8,5)(9,32,25,16)(10,15,26,31)(11,30,21,20)(12,19,22,29)(13,28,23,18)(14,17,24,27) );

G=PermutationGroup([(1,8),(2,7),(3,4),(5,6),(9,12),(10,13),(11,14),(15,28),(16,29),(17,30),(18,31),(19,32),(20,27),(21,24),(22,25),(23,26)], [(1,28,7,18),(2,31,8,15),(3,23,6,13),(4,26,5,10),(9,11,25,21),(12,14,22,24),(16,30,32,20),(17,19,27,29)], [(1,32,7,16),(2,29,8,19),(3,21,6,11),(4,24,5,14),(9,23,25,13),(10,12,26,22),(15,17,31,27),(18,20,28,30)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12,13,14),(15,16,17,18,19,20),(21,22,23,24,25,26),(27,28,29,30,31,32)], [(1,6,7,3),(2,4,8,5),(9,32,25,16),(10,15,26,31),(11,30,21,20),(12,19,22,29),(13,28,23,18),(14,17,24,27)])

Matrix representation G ⊆ GL7(𝔽73)

72000000
07200000
00720000
0001000
0000100
0000010
0000001
,
0010000
7272720000
1000000
00096500
000656400
0000001
00000720
,
0100000
1000000
7272720000
00007200
0001000
000685648
00012589
,
1000000
0010000
7272720000
00072000
00096500
0001010
0006946564
,
72000000
1110000
00720000
000720710
0001611618
0001010
000648072

G:=sub<GL(7,GF(73))| [72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,72,1,0,0,0,0,0,72,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,9,65,0,0,0,0,0,65,64,0,0,0,0,0,0,0,0,72,0,0,0,0,0,1,0],[0,1,72,0,0,0,0,1,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,68,12,0,0,0,72,0,5,5,0,0,0,0,0,64,8,0,0,0,0,0,8,9],[1,0,72,0,0,0,0,0,0,72,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,9,1,69,0,0,0,0,65,0,4,0,0,0,0,0,1,65,0,0,0,0,0,0,64],[72,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,16,1,64,0,0,0,0,1,0,8,0,0,0,71,16,1,0,0,0,0,0,18,0,72] >;

Character table of C2×Q8.D6

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F6A6B6C6D6E6F6G8A8B8C8D
 size 1111221212866661212888888812121212
ρ111111111111111111111111111    trivial
ρ21-1-11-11-111-1-111-11-111-11-1-11-1-11    linear of order 2
ρ31111-1-11111-1-11-1-11-1-111-1-111-1-1    linear of order 2
ρ41-1-111-1-111-11-111-1-1-1-1-11111-11-1    linear of order 2
ρ51111-1-1-1-111-1-11111-1-111-1-1-1-111    linear of order 2
ρ61-1-111-11-11-11-11-11-1-1-1-1111-11-11    linear of order 2
ρ7111111-1-111111-1-11111111-1-1-1-1    linear of order 2
ρ81-1-11-111-11-1-1111-1-111-11-1-1-111-1    linear of order 2
ρ92222-2-200-12-2-2200-111-1-1110000    orthogonal lifted from D6
ρ102-2-222-200-1-22-22001111-1-1-10000    orthogonal lifted from D6
ρ1122222200-1222200-1-1-1-1-1-1-10000    orthogonal lifted from S3
ρ122-2-22-2200-1-2-222001-1-11-1110000    orthogonal lifted from D6
ρ133333-3-3110-111-1-1-10000000-1-111    orthogonal lifted from C2×S4
ρ143-3-333-31-101-11-1-1100000001-11-1    orthogonal lifted from C2×S4
ρ153-3-33-331-1011-1-11-100000001-1-11    orthogonal lifted from C2×S4
ρ16333333110-1-1-1-1110000000-1-1-1-1    orthogonal lifted from S4
ρ173-3-33-33-11011-1-1-110000000-111-1    orthogonal lifted from C2×S4
ρ18333333-1-10-1-1-1-1-1-100000001111    orthogonal lifted from S4
ρ193333-3-3-1-10-111-111000000011-1-1    orthogonal lifted from C2×S4
ρ203-3-333-3-1101-11-11-10000000-11-11    orthogonal lifted from C2×S4
ρ214-44-40000-2000000-20022000000    symplectic lifted from Q8.D6, Schur index 2
ρ2244-4-40000-2000000200-22000000    symplectic lifted from Q8.D6, Schur index 2
ρ234-44-4000010000001-3-3-1-1-3-30000    complex lifted from Q8.D6
ρ244-44-4000010000001-3-3-1-1-3-30000    complex lifted from Q8.D6
ρ2544-4-400001000000-1-3-31-1-3-30000    complex lifted from Q8.D6
ρ2644-4-400001000000-1-3-31-1-3-30000    complex lifted from Q8.D6

In GAP, Magma, Sage, TeX

C_2\times Q_8.D_6
% in TeX

G:=Group("C2xQ8.D6");
// GroupNames label

G:=SmallGroup(192,1476);
// by ID

G=gap.SmallGroup(192,1476);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,2102,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^6=1,c^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,d*b*d^-1=b*c,d*c*d^-1=b,e*c*e^-1=b^-1*c,e*d*e^-1=b^2*d^-1>;
// generators/relations

׿
×
𝔽