extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C3×D4) = C3×C2≀C4 | φ: C3×D4/C3 → D4 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).1(C3xD4) | 192,157 |
(C2×C4).2(C3×D4) = C3×C23.D4 | φ: C3×D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).2(C3xD4) | 192,158 |
(C2×C4).3(C3×D4) = C3×C42.C4 | φ: C3×D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).3(C3xD4) | 192,161 |
(C2×C4).4(C3×D4) = C3×C42.3C4 | φ: C3×D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).4(C3xD4) | 192,162 |
(C2×C4).5(C3×D4) = C3×D4.8D4 | φ: C3×D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).5(C3xD4) | 192,887 |
(C2×C4).6(C3×D4) = C3×D4.10D4 | φ: C3×D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).6(C3xD4) | 192,889 |
(C2×C4).7(C3×D4) = C3×C23.7D4 | φ: C3×D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).7(C3xD4) | 192,891 |
(C2×C4).8(C3×D4) = C3×C4.9C42 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).8(C3xD4) | 192,143 |
(C2×C4).9(C3×D4) = C3×C4.10C42 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).9(C3xD4) | 192,144 |
(C2×C4).10(C3×D4) = C3×D8⋊2C4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).10(C3xD4) | 192,166 |
(C2×C4).11(C3×D4) = C3×M5(2)⋊C2 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).11(C3xD4) | 192,167 |
(C2×C4).12(C3×D4) = C3×C8.17D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).12(C3xD4) | 192,168 |
(C2×C4).13(C3×D4) = C3×C8.Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).13(C3xD4) | 192,171 |
(C2×C4).14(C3×D4) = C3×C23⋊Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).14(C3xD4) | 192,826 |
(C2×C4).15(C3×D4) = C3×C23.78C23 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).15(C3xD4) | 192,828 |
(C2×C4).16(C3×D4) = C3×C23.Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).16(C3xD4) | 192,829 |
(C2×C4).17(C3×D4) = C3×C23.11D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).17(C3xD4) | 192,830 |
(C2×C4).18(C3×D4) = C3×C23.81C23 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).18(C3xD4) | 192,831 |
(C2×C4).19(C3×D4) = C3×C23.4Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).19(C3xD4) | 192,832 |
(C2×C4).20(C3×D4) = C3×C23.83C23 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).20(C3xD4) | 192,833 |
(C2×C4).21(C3×D4) = C6×C4.D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).21(C3xD4) | 192,844 |
(C2×C4).22(C3×D4) = C6×C4.10D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).22(C3xD4) | 192,845 |
(C2×C4).23(C3×D4) = C3×C23.37D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).23(C3xD4) | 192,851 |
(C2×C4).24(C3×D4) = C3×C23.38D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).24(C3xD4) | 192,852 |
(C2×C4).25(C3×D4) = C3×C42⋊C22 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).25(C3xD4) | 192,854 |
(C2×C4).26(C3×D4) = C3×C22⋊D8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).26(C3xD4) | 192,880 |
(C2×C4).27(C3×D4) = C3×Q8⋊D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).27(C3xD4) | 192,881 |
(C2×C4).28(C3×D4) = C3×C22⋊SD16 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).28(C3xD4) | 192,883 |
(C2×C4).29(C3×D4) = C3×C22⋊Q16 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).29(C3xD4) | 192,884 |
(C2×C4).30(C3×D4) = C3×D4.2D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).30(C3xD4) | 192,896 |
(C2×C4).31(C3×D4) = C3×Q8.D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).31(C3xD4) | 192,897 |
(C2×C4).32(C3×D4) = C3×C8⋊D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).32(C3xD4) | 192,901 |
(C2×C4).33(C3×D4) = C3×C8⋊2D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).33(C3xD4) | 192,902 |
(C2×C4).34(C3×D4) = C3×C8.D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).34(C3xD4) | 192,903 |
(C2×C4).35(C3×D4) = C3×D4.Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).35(C3xD4) | 192,911 |
(C2×C4).36(C3×D4) = C3×Q8.Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).36(C3xD4) | 192,912 |
(C2×C4).37(C3×D4) = C3×C22.D8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).37(C3xD4) | 192,913 |
(C2×C4).38(C3×D4) = C3×C23.46D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).38(C3xD4) | 192,914 |
(C2×C4).39(C3×D4) = C3×C23.47D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).39(C3xD4) | 192,916 |
(C2×C4).40(C3×D4) = C3×C23.48D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).40(C3xD4) | 192,917 |
(C2×C4).41(C3×D4) = C3×C42.28C22 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).41(C3xD4) | 192,922 |
(C2×C4).42(C3×D4) = C3×C42.29C22 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).42(C3xD4) | 192,923 |
(C2×C4).43(C3×D4) = C3×C42.30C22 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).43(C3xD4) | 192,924 |
(C2×C4).44(C3×D4) = C3×C8⋊3D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).44(C3xD4) | 192,929 |
(C2×C4).45(C3×D4) = C3×C8.2D4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).45(C3xD4) | 192,930 |
(C2×C4).46(C3×D4) = C3×C8⋊Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).46(C3xD4) | 192,934 |
(C2×C4).47(C3×D4) = C3×C16⋊C22 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).47(C3xD4) | 192,942 |
(C2×C4).48(C3×D4) = C3×Q32⋊C2 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).48(C3xD4) | 192,943 |
(C2×C4).49(C3×D4) = C3×C23.38C23 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).49(C3xD4) | 192,1425 |
(C2×C4).50(C3×D4) = C12×D8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).50(C3xD4) | 192,870 |
(C2×C4).51(C3×D4) = C12×SD16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).51(C3xD4) | 192,871 |
(C2×C4).52(C3×D4) = C12×Q16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).52(C3xD4) | 192,872 |
(C2×C4).53(C3×D4) = C3×C8⋊8D4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).53(C3xD4) | 192,898 |
(C2×C4).54(C3×D4) = C3×C8⋊7D4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).54(C3xD4) | 192,899 |
(C2×C4).55(C3×D4) = C3×C8.18D4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).55(C3xD4) | 192,900 |
(C2×C4).56(C3×D4) = C3×C42.78C22 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).56(C3xD4) | 192,921 |
(C2×C4).57(C3×D4) = C3×C8.12D4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).57(C3xD4) | 192,928 |
(C2×C4).58(C3×D4) = C3×C8.5Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).58(C3xD4) | 192,932 |
(C2×C4).59(C3×D4) = C3×C2.D16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).59(C3xD4) | 192,163 |
(C2×C4).60(C3×D4) = C3×C2.Q32 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).60(C3xD4) | 192,164 |
(C2×C4).61(C3×D4) = C3×D8.C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | 2 | (C2xC4).61(C3xD4) | 192,165 |
(C2×C4).62(C3×D4) = C3×C16⋊3C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).62(C3xD4) | 192,172 |
(C2×C4).63(C3×D4) = C3×C16⋊4C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).63(C3xD4) | 192,173 |
(C2×C4).64(C3×D4) = C3×C8.4Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | 2 | (C2xC4).64(C3xD4) | 192,174 |
(C2×C4).65(C3×D4) = C3×C42⋊8C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).65(C3xD4) | 192,815 |
(C2×C4).66(C3×D4) = C3×C42⋊9C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).66(C3xD4) | 192,817 |
(C2×C4).67(C3×D4) = C3×C23.67C23 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).67(C3xD4) | 192,824 |
(C2×C4).68(C3×D4) = C6×D4⋊C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).68(C3xD4) | 192,847 |
(C2×C4).69(C3×D4) = C6×Q8⋊C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).69(C3xD4) | 192,848 |
(C2×C4).70(C3×D4) = C6×C4≀C2 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).70(C3xD4) | 192,853 |
(C2×C4).71(C3×D4) = C3×C4⋊M4(2) | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).71(C3xD4) | 192,856 |
(C2×C4).72(C3×D4) = C6×C4.Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).72(C3xD4) | 192,858 |
(C2×C4).73(C3×D4) = C6×C2.D8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).73(C3xD4) | 192,859 |
(C2×C4).74(C3×D4) = C6×C8.C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).74(C3xD4) | 192,862 |
(C2×C4).75(C3×D4) = C3×C4.4D8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).75(C3xD4) | 192,919 |
(C2×C4).76(C3×D4) = C3×C4.SD16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).76(C3xD4) | 192,920 |
(C2×C4).77(C3×D4) = C3×C8⋊5D4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).77(C3xD4) | 192,925 |
(C2×C4).78(C3×D4) = C3×C8⋊4D4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).78(C3xD4) | 192,926 |
(C2×C4).79(C3×D4) = C3×C4⋊Q16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).79(C3xD4) | 192,927 |
(C2×C4).80(C3×D4) = C3×C8⋊3Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).80(C3xD4) | 192,931 |
(C2×C4).81(C3×D4) = C3×C8⋊2Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).81(C3xD4) | 192,933 |
(C2×C4).82(C3×D4) = C6×D16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).82(C3xD4) | 192,938 |
(C2×C4).83(C3×D4) = C6×SD32 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).83(C3xD4) | 192,939 |
(C2×C4).84(C3×D4) = C6×Q32 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).84(C3xD4) | 192,940 |
(C2×C4).85(C3×D4) = C3×C4○D16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | 2 | (C2xC4).85(C3xD4) | 192,941 |
(C2×C4).86(C3×D4) = C6×C4.4D4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).86(C3xD4) | 192,1415 |
(C2×C4).87(C3×D4) = C6×C4⋊Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).87(C3xD4) | 192,1420 |
(C2×C4).88(C3×D4) = C2×C6×D8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).88(C3xD4) | 192,1458 |
(C2×C4).89(C3×D4) = C2×C6×SD16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).89(C3xD4) | 192,1459 |
(C2×C4).90(C3×D4) = C2×C6×Q16 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).90(C3xD4) | 192,1460 |
(C2×C4).91(C3×D4) = C3×C23⋊C8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).91(C3xD4) | 192,129 |
(C2×C4).92(C3×D4) = C3×C22.M4(2) | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).92(C3xD4) | 192,130 |
(C2×C4).93(C3×D4) = C3×D4⋊C8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).93(C3xD4) | 192,131 |
(C2×C4).94(C3×D4) = C3×Q8⋊C8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).94(C3xD4) | 192,132 |
(C2×C4).95(C3×D4) = C3×C22.SD16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).95(C3xD4) | 192,133 |
(C2×C4).96(C3×D4) = C3×C23.31D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).96(C3xD4) | 192,134 |
(C2×C4).97(C3×D4) = C3×C42.C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).97(C3xD4) | 192,135 |
(C2×C4).98(C3×D4) = C3×C42.2C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).98(C3xD4) | 192,136 |
(C2×C4).99(C3×D4) = C3×C23.8Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).99(C3xD4) | 192,818 |
(C2×C4).100(C3×D4) = C3×C23.63C23 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).100(C3xD4) | 192,820 |
(C2×C4).101(C3×D4) = C3×C24.C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).101(C3xD4) | 192,821 |
(C2×C4).102(C3×D4) = C3×SD16⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).102(C3xD4) | 192,873 |
(C2×C4).103(C3×D4) = C3×Q16⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).103(C3xD4) | 192,874 |
(C2×C4).104(C3×D4) = C3×D8⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).104(C3xD4) | 192,875 |
(C2×C4).105(C3×D4) = C3×D4⋊D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).105(C3xD4) | 192,882 |
(C2×C4).106(C3×D4) = C3×D4.7D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).106(C3xD4) | 192,885 |
(C2×C4).107(C3×D4) = C3×C23.19D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).107(C3xD4) | 192,915 |
(C2×C4).108(C3×D4) = C3×C23.20D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).108(C3xD4) | 192,918 |
(C2×C4).109(C3×D4) = C3×C4.D8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).109(C3xD4) | 192,137 |
(C2×C4).110(C3×D4) = C3×C4.10D8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).110(C3xD4) | 192,138 |
(C2×C4).111(C3×D4) = C3×C4.6Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).111(C3xD4) | 192,139 |
(C2×C4).112(C3×D4) = C3×C22.4Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).112(C3xD4) | 192,146 |
(C2×C4).113(C3×D4) = C3×C4.C42 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).113(C3xD4) | 192,147 |
(C2×C4).114(C3×D4) = C3×C22.C42 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).114(C3xD4) | 192,149 |
(C2×C4).115(C3×D4) = C3×M4(2)⋊4C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).115(C3xD4) | 192,150 |
(C2×C4).116(C3×D4) = C3×C23.7Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).116(C3xD4) | 192,813 |
(C2×C4).117(C3×D4) = C3×C23.65C23 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).117(C3xD4) | 192,822 |
(C2×C4).118(C3×D4) = C3×C24.4C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).118(C3xD4) | 192,840 |
(C2×C4).119(C3×D4) = C3×(C22×C8)⋊C2 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).119(C3xD4) | 192,841 |
(C2×C4).120(C3×D4) = C3×C23.C23 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).120(C3xD4) | 192,843 |
(C2×C4).121(C3×D4) = C3×M4(2).8C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).121(C3xD4) | 192,846 |
(C2×C4).122(C3×D4) = C3×C23.24D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).122(C3xD4) | 192,849 |
(C2×C4).123(C3×D4) = C3×C23.36D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).123(C3xD4) | 192,850 |
(C2×C4).124(C3×D4) = C3×C42.6C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).124(C3xD4) | 192,857 |
(C2×C4).125(C3×D4) = C3×M4(2)⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).125(C3xD4) | 192,861 |
(C2×C4).126(C3×D4) = C3×M4(2).C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).126(C3xD4) | 192,863 |
(C2×C4).127(C3×D4) = C3×C4⋊D8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).127(C3xD4) | 192,892 |
(C2×C4).128(C3×D4) = C3×C4⋊SD16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).128(C3xD4) | 192,893 |
(C2×C4).129(C3×D4) = C3×D4.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).129(C3xD4) | 192,894 |
(C2×C4).130(C3×D4) = C3×C4⋊2Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).130(C3xD4) | 192,895 |
(C2×C4).131(C3×D4) = C3×D4⋊Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).131(C3xD4) | 192,907 |
(C2×C4).132(C3×D4) = C3×Q8⋊Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).132(C3xD4) | 192,908 |
(C2×C4).133(C3×D4) = C3×D4⋊2Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).133(C3xD4) | 192,909 |
(C2×C4).134(C3×D4) = C3×C4.Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).134(C3xD4) | 192,910 |
(C2×C4).135(C3×D4) = C6×C22⋊Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).135(C3xD4) | 192,1412 |
(C2×C4).136(C3×D4) = C6×C8⋊C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).136(C3xD4) | 192,1462 |
(C2×C4).137(C3×D4) = C6×C8.C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).137(C3xD4) | 192,1463 |
(C2×C4).138(C3×D4) = C3×D8⋊C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).138(C3xD4) | 192,1464 |
(C2×C4).139(C3×D4) = C3×C8⋊2C8 | central extension (φ=1) | 192 | | (C2xC4).139(C3xD4) | 192,140 |
(C2×C4).140(C3×D4) = C3×C8⋊1C8 | central extension (φ=1) | 192 | | (C2xC4).140(C3xD4) | 192,141 |
(C2×C4).141(C3×D4) = C3×C22.7C42 | central extension (φ=1) | 192 | | (C2xC4).141(C3xD4) | 192,142 |
(C2×C4).142(C3×D4) = C3×C42⋊6C4 | central extension (φ=1) | 48 | | (C2xC4).142(C3xD4) | 192,145 |
(C2×C4).143(C3×D4) = C12×C22⋊C4 | central extension (φ=1) | 96 | | (C2xC4).143(C3xD4) | 192,810 |
(C2×C4).144(C3×D4) = C12×C4⋊C4 | central extension (φ=1) | 192 | | (C2xC4).144(C3xD4) | 192,811 |
(C2×C4).145(C3×D4) = C6×C22⋊C8 | central extension (φ=1) | 96 | | (C2xC4).145(C3xD4) | 192,839 |
(C2×C4).146(C3×D4) = C6×C4⋊C8 | central extension (φ=1) | 192 | | (C2xC4).146(C3xD4) | 192,855 |
(C2×C4).147(C3×D4) = C3×C23.25D4 | central extension (φ=1) | 96 | | (C2xC4).147(C3xD4) | 192,860 |
(C2×C4).148(C3×D4) = C6×C4○D8 | central extension (φ=1) | 96 | | (C2xC4).148(C3xD4) | 192,1461 |