extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C2xD4) = D6:5SD16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.1(C2xD4) | 192,335 |
C12.2(C2xD4) = D4:3D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.2(C2xD4) | 192,340 |
C12.3(C2xD4) = D4.D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.3(C2xD4) | 192,342 |
C12.4(C2xD4) = C42:5D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.4(C2xD4) | 192,384 |
C12.5(C2xD4) = Q8.14D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4- | C12.5(C2xD4) | 192,385 |
C12.6(C2xD4) = D4.10D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.6(C2xD4) | 192,386 |
C12.7(C2xD4) = S3xD16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4+ | C12.7(C2xD4) | 192,469 |
C12.8(C2xD4) = D8:D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.8(C2xD4) | 192,470 |
C12.9(C2xD4) = D16:3S3 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4- | C12.9(C2xD4) | 192,471 |
C12.10(C2xD4) = S3xSD32 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.10(C2xD4) | 192,472 |
C12.11(C2xD4) = D48:C2 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4+ | C12.11(C2xD4) | 192,473 |
C12.12(C2xD4) = SD32:S3 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4- | C12.12(C2xD4) | 192,474 |
C12.13(C2xD4) = D6.2D8 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4 | C12.13(C2xD4) | 192,475 |
C12.14(C2xD4) = S3xQ32 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4- | C12.14(C2xD4) | 192,476 |
C12.15(C2xD4) = Q32:S3 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4 | C12.15(C2xD4) | 192,477 |
C12.16(C2xD4) = D48:5C2 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4+ | C12.16(C2xD4) | 192,478 |
C12.17(C2xD4) = C12:7D8 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.17(C2xD4) | 192,574 |
C12.18(C2xD4) = D4.1D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.18(C2xD4) | 192,575 |
C12.19(C2xD4) = D4.2D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.19(C2xD4) | 192,578 |
C12.20(C2xD4) = Q8:2D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.20(C2xD4) | 192,586 |
C12.21(C2xD4) = Q8.6D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.21(C2xD4) | 192,587 |
C12.22(C2xD4) = C12:7Q16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 192 | | C12.22(C2xD4) | 192,590 |
C12.23(C2xD4) = C42.61D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.23(C2xD4) | 192,613 |
C12.24(C2xD4) = D12.23D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.24(C2xD4) | 192,616 |
C12.25(C2xD4) = C42.64D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.25(C2xD4) | 192,617 |
C12.26(C2xD4) = C42.214D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.26(C2xD4) | 192,618 |
C12.27(C2xD4) = C42.65D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.27(C2xD4) | 192,619 |
C12.28(C2xD4) = C42:7D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.28(C2xD4) | 192,620 |
C12.29(C2xD4) = D12.14D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.29(C2xD4) | 192,621 |
C12.30(C2xD4) = C12:2D8 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.30(C2xD4) | 192,631 |
C12.31(C2xD4) = C12:D8 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.31(C2xD4) | 192,632 |
C12.32(C2xD4) = C42.74D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.32(C2xD4) | 192,633 |
C12.33(C2xD4) = Dic6:9D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.33(C2xD4) | 192,634 |
C12.34(C2xD4) = C12:4SD16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.34(C2xD4) | 192,635 |
C12.35(C2xD4) = C42:8D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 24 | 4 | C12.35(C2xD4) | 192,636 |
C12.36(C2xD4) = C12:5SD16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.36(C2xD4) | 192,642 |
C12.37(C2xD4) = C12:6SD16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.37(C2xD4) | 192,644 |
C12.38(C2xD4) = C42.80D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.38(C2xD4) | 192,645 |
C12.39(C2xD4) = C12:Q16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 192 | | C12.39(C2xD4) | 192,649 |
C12.40(C2xD4) = C12:3Q16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 192 | | C12.40(C2xD4) | 192,651 |
C12.41(C2xD4) = D12.15D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.41(C2xD4) | 192,654 |
C12.42(C2xD4) = Q8.8D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.42(C2xD4) | 192,700 |
C12.43(C2xD4) = Q8.9D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4+ | C12.43(C2xD4) | 192,701 |
C12.44(C2xD4) = Q8.10D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4- | C12.44(C2xD4) | 192,702 |
C12.45(C2xD4) = C24:5D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.45(C2xD4) | 192,710 |
C12.46(C2xD4) = D12:D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.46(C2xD4) | 192,715 |
C12.47(C2xD4) = D6:6SD16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.47(C2xD4) | 192,728 |
C12.48(C2xD4) = D6:8SD16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.48(C2xD4) | 192,729 |
C12.49(C2xD4) = D12:7D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.49(C2xD4) | 192,731 |
C12.50(C2xD4) = C24:15D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.50(C2xD4) | 192,734 |
C12.51(C2xD4) = C24.26D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 192 | | C12.51(C2xD4) | 192,742 |
C12.52(C2xD4) = D6:5Q16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.52(C2xD4) | 192,745 |
C12.53(C2xD4) = D12.17D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.53(C2xD4) | 192,746 |
C12.54(C2xD4) = D4:5D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.54(C2xD4) | 192,1113 |
C12.55(C2xD4) = D4:6D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.55(C2xD4) | 192,1114 |
C12.56(C2xD4) = Q8xD12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.56(C2xD4) | 192,1134 |
C12.57(C2xD4) = Q8:6D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.57(C2xD4) | 192,1135 |
C12.58(C2xD4) = Q8:7D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.58(C2xD4) | 192,1136 |
C12.59(C2xD4) = C42.233D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.59(C2xD4) | 192,1227 |
C12.60(C2xD4) = S3xC4.4D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.60(C2xD4) | 192,1232 |
C12.61(C2xD4) = C42:20D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.61(C2xD4) | 192,1233 |
C12.62(C2xD4) = C42.141D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.62(C2xD4) | 192,1234 |
C12.63(C2xD4) = D12:10D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.63(C2xD4) | 192,1235 |
C12.64(C2xD4) = Dic6:10D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.64(C2xD4) | 192,1236 |
C12.65(C2xD4) = C42:28D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.65(C2xD4) | 192,1274 |
C12.66(C2xD4) = C42.238D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.66(C2xD4) | 192,1275 |
C12.67(C2xD4) = Dic6:11D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.67(C2xD4) | 192,1277 |
C12.68(C2xD4) = S3xC4:Q8 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.68(C2xD4) | 192,1282 |
C12.69(C2xD4) = C42.171D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.69(C2xD4) | 192,1283 |
C12.70(C2xD4) = C42.240D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.70(C2xD4) | 192,1284 |
C12.71(C2xD4) = D12:12D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.71(C2xD4) | 192,1285 |
C12.72(C2xD4) = D12:8Q8 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.72(C2xD4) | 192,1286 |
C12.73(C2xD4) = D4.11D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.73(C2xD4) | 192,1310 |
C12.74(C2xD4) = D4.12D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4+ | C12.74(C2xD4) | 192,1311 |
C12.75(C2xD4) = D4.13D12 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4- | C12.75(C2xD4) | 192,1312 |
C12.76(C2xD4) = C2xS3xD8 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.76(C2xD4) | 192,1313 |
C12.77(C2xD4) = C2xD8:S3 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.77(C2xD4) | 192,1314 |
C12.78(C2xD4) = C2xD8:3S3 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.78(C2xD4) | 192,1315 |
C12.79(C2xD4) = D8:13D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.79(C2xD4) | 192,1316 |
C12.80(C2xD4) = C2xS3xSD16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.80(C2xD4) | 192,1317 |
C12.81(C2xD4) = C2xQ8:3D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | | C12.81(C2xD4) | 192,1318 |
C12.82(C2xD4) = C2xD4.D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.82(C2xD4) | 192,1319 |
C12.83(C2xD4) = C2xQ8.7D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.83(C2xD4) | 192,1320 |
C12.84(C2xD4) = SD16:13D6 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.84(C2xD4) | 192,1321 |
C12.85(C2xD4) = C2xS3xQ16 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.85(C2xD4) | 192,1322 |
C12.86(C2xD4) = C2xQ16:S3 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.86(C2xD4) | 192,1323 |
C12.87(C2xD4) = C2xD24:C2 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | | C12.87(C2xD4) | 192,1324 |
C12.88(C2xD4) = D12.30D4 | φ: C2xD4/C4 → C22 ⊆ Aut C12 | 96 | 4 | C12.88(C2xD4) | 192,1325 |
C12.89(C2xD4) = S3xC4.D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 24 | 8+ | C12.89(C2xD4) | 192,303 |
C12.90(C2xD4) = M4(2).19D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.90(C2xD4) | 192,304 |
C12.91(C2xD4) = M4(2):D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.91(C2xD4) | 192,305 |
C12.92(C2xD4) = D12:1D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 24 | 8+ | C12.92(C2xD4) | 192,306 |
C12.93(C2xD4) = D12.2D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.93(C2xD4) | 192,307 |
C12.94(C2xD4) = D12.3D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.94(C2xD4) | 192,308 |
C12.95(C2xD4) = S3xC4.10D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.95(C2xD4) | 192,309 |
C12.96(C2xD4) = M4(2).21D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.96(C2xD4) | 192,310 |
C12.97(C2xD4) = D12.4D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.97(C2xD4) | 192,311 |
C12.98(C2xD4) = D12.5D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.98(C2xD4) | 192,312 |
C12.99(C2xD4) = D12.6D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.99(C2xD4) | 192,313 |
C12.100(C2xD4) = D12.7D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 8- | C12.100(C2xD4) | 192,314 |
C12.101(C2xD4) = Dic6:2D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.101(C2xD4) | 192,321 |
C12.102(C2xD4) = Dic6.D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.102(C2xD4) | 192,326 |
C12.103(C2xD4) = S3xD4:C4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.103(C2xD4) | 192,328 |
C12.104(C2xD4) = C4:C4:19D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.104(C2xD4) | 192,329 |
C12.105(C2xD4) = D4:(C4xS3) | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.105(C2xD4) | 192,330 |
C12.106(C2xD4) = D4:2S3:C4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.106(C2xD4) | 192,331 |
C12.107(C2xD4) = D4:D12 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.107(C2xD4) | 192,332 |
C12.108(C2xD4) = D6:D8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.108(C2xD4) | 192,334 |
C12.109(C2xD4) = D6:SD16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.109(C2xD4) | 192,337 |
C12.110(C2xD4) = C3:C8:1D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.110(C2xD4) | 192,339 |
C12.111(C2xD4) = C3:C8:D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.111(C2xD4) | 192,341 |
C12.112(C2xD4) = D12:3D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.112(C2xD4) | 192,345 |
C12.113(C2xD4) = D12.D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.113(C2xD4) | 192,346 |
C12.114(C2xD4) = Dic3:Q16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 192 | | C12.114(C2xD4) | 192,354 |
C12.115(C2xD4) = Dic6.11D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.115(C2xD4) | 192,357 |
C12.116(C2xD4) = S3xQ8:C4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.116(C2xD4) | 192,360 |
C12.117(C2xD4) = (S3xQ8):C4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.117(C2xD4) | 192,361 |
C12.118(C2xD4) = Q8:7(C4xS3) | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.118(C2xD4) | 192,362 |
C12.119(C2xD4) = C4:C4.150D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.119(C2xD4) | 192,363 |
C12.120(C2xD4) = Q8:3D12 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.120(C2xD4) | 192,365 |
C12.121(C2xD4) = D6:2SD16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.121(C2xD4) | 192,366 |
C12.122(C2xD4) = Q8.11D12 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.122(C2xD4) | 192,367 |
C12.123(C2xD4) = D6:Q16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.123(C2xD4) | 192,368 |
C12.124(C2xD4) = Q8:4D12 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.124(C2xD4) | 192,369 |
C12.125(C2xD4) = C3:(C8:D4) | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.125(C2xD4) | 192,371 |
C12.126(C2xD4) = D6:1Q16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.126(C2xD4) | 192,372 |
C12.127(C2xD4) = C3:C8.D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.127(C2xD4) | 192,375 |
C12.128(C2xD4) = Dic3:SD16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.128(C2xD4) | 192,377 |
C12.129(C2xD4) = D12.12D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.129(C2xD4) | 192,378 |
C12.130(C2xD4) = C8:8D12 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.130(C2xD4) | 192,423 |
C12.131(C2xD4) = C24:7D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.131(C2xD4) | 192,424 |
C12.132(C2xD4) = C8.2D12 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.132(C2xD4) | 192,426 |
C12.133(C2xD4) = D6:2D8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.133(C2xD4) | 192,442 |
C12.134(C2xD4) = C8:3D12 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.134(C2xD4) | 192,445 |
C12.135(C2xD4) = D6:2Q16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.135(C2xD4) | 192,446 |
C12.136(C2xD4) = C24.18D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 4- | C12.136(C2xD4) | 192,455 |
C12.137(C2xD4) = C24.19D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 4+ | C12.137(C2xD4) | 192,456 |
C12.138(C2xD4) = C24.42D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 4 | C12.138(C2xD4) | 192,457 |
C12.139(C2xD4) = C2xC6.D8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.139(C2xD4) | 192,524 |
C12.140(C2xD4) = C4oD12:C4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.140(C2xD4) | 192,525 |
C12.141(C2xD4) = C2xC6.SD16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 192 | | C12.141(C2xD4) | 192,528 |
C12.142(C2xD4) = C4:C4:36D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.142(C2xD4) | 192,560 |
C12.143(C2xD4) = C4.(C2xD12) | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.143(C2xD4) | 192,561 |
C12.144(C2xD4) = C4:C4.237D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.144(C2xD4) | 192,563 |
C12.145(C2xD4) = D12:16D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.145(C2xD4) | 192,595 |
C12.146(C2xD4) = D12:17D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.146(C2xD4) | 192,596 |
C12.147(C2xD4) = C3:C8:22D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.147(C2xD4) | 192,597 |
C12.148(C2xD4) = C4:D4:S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.148(C2xD4) | 192,598 |
C12.149(C2xD4) = Dic6:17D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.149(C2xD4) | 192,599 |
C12.150(C2xD4) = C3:C8:23D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.150(C2xD4) | 192,600 |
C12.151(C2xD4) = C3:C8:5D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.151(C2xD4) | 192,601 |
C12.152(C2xD4) = D12.36D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.152(C2xD4) | 192,605 |
C12.153(C2xD4) = D12.37D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.153(C2xD4) | 192,606 |
C12.154(C2xD4) = C3:C8:24D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.154(C2xD4) | 192,607 |
C12.155(C2xD4) = C3:C8:6D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.155(C2xD4) | 192,608 |
C12.156(C2xD4) = Dic6.37D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.156(C2xD4) | 192,609 |
C12.157(C2xD4) = C3:C8.29D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.157(C2xD4) | 192,610 |
C12.158(C2xD4) = C3:C8.6D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.158(C2xD4) | 192,611 |
C12.159(C2xD4) = C2xC3:D16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.159(C2xD4) | 192,705 |
C12.160(C2xD4) = D8.D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 4 | C12.160(C2xD4) | 192,706 |
C12.161(C2xD4) = C2xD8.S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.161(C2xD4) | 192,707 |
C12.162(C2xD4) = Dic3:D8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.162(C2xD4) | 192,709 |
C12.163(C2xD4) = (C6xD8).C2 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.163(C2xD4) | 192,712 |
C12.164(C2xD4) = C24:11D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.164(C2xD4) | 192,713 |
C12.165(C2xD4) = C24.22D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.165(C2xD4) | 192,714 |
C12.166(C2xD4) = D6:3D8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.166(C2xD4) | 192,716 |
C12.167(C2xD4) = Dic6:D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.167(C2xD4) | 192,717 |
C12.168(C2xD4) = C24:12D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.168(C2xD4) | 192,718 |
C12.169(C2xD4) = C24.23D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 4 | C12.169(C2xD4) | 192,719 |
C12.170(C2xD4) = Dic3:3SD16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.170(C2xD4) | 192,721 |
C12.171(C2xD4) = Dic3:5SD16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.171(C2xD4) | 192,722 |
C12.172(C2xD4) = (C3xD4).D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.172(C2xD4) | 192,724 |
C12.173(C2xD4) = (C3xQ8).D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.173(C2xD4) | 192,725 |
C12.174(C2xD4) = C24.31D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.174(C2xD4) | 192,726 |
C12.175(C2xD4) = C24.43D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.175(C2xD4) | 192,727 |
C12.176(C2xD4) = C24:14D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.176(C2xD4) | 192,730 |
C12.177(C2xD4) = Dic6.16D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.177(C2xD4) | 192,732 |
C12.178(C2xD4) = C24:8D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.178(C2xD4) | 192,733 |
C12.179(C2xD4) = C24:9D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.179(C2xD4) | 192,735 |
C12.180(C2xD4) = C24.44D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 4 | C12.180(C2xD4) | 192,736 |
C12.181(C2xD4) = C2xC8.6D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.181(C2xD4) | 192,737 |
C12.182(C2xD4) = C24.27C23 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 4 | C12.182(C2xD4) | 192,738 |
C12.183(C2xD4) = C2xC3:Q32 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 192 | | C12.183(C2xD4) | 192,739 |
C12.184(C2xD4) = Dic3:3Q16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 192 | | C12.184(C2xD4) | 192,741 |
C12.185(C2xD4) = (C2xQ16):S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.185(C2xD4) | 192,744 |
C12.186(C2xD4) = D6:3Q16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.186(C2xD4) | 192,747 |
C12.187(C2xD4) = C24.36D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.187(C2xD4) | 192,748 |
C12.188(C2xD4) = C24.37D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.188(C2xD4) | 192,749 |
C12.189(C2xD4) = C24.28D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.189(C2xD4) | 192,750 |
C12.190(C2xD4) = C24.29D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 4 | C12.190(C2xD4) | 192,751 |
C12.191(C2xD4) = Q16:D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 4+ | C12.191(C2xD4) | 192,752 |
C12.192(C2xD4) = Q16.D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 4 | C12.192(C2xD4) | 192,753 |
C12.193(C2xD4) = D8.9D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 4- | C12.193(C2xD4) | 192,754 |
C12.194(C2xD4) = D12:18D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 24 | 8+ | C12.194(C2xD4) | 192,757 |
C12.195(C2xD4) = M4(2).D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.195(C2xD4) | 192,758 |
C12.196(C2xD4) = M4(2).13D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.196(C2xD4) | 192,759 |
C12.197(C2xD4) = D12.38D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.197(C2xD4) | 192,760 |
C12.198(C2xD4) = D12.39D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.198(C2xD4) | 192,761 |
C12.199(C2xD4) = M4(2).15D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.199(C2xD4) | 192,762 |
C12.200(C2xD4) = M4(2).16D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 8- | C12.200(C2xD4) | 192,763 |
C12.201(C2xD4) = D12.40D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.201(C2xD4) | 192,764 |
C12.202(C2xD4) = C2xD4:Dic3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.202(C2xD4) | 192,773 |
C12.203(C2xD4) = (C6xD4):6C4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.203(C2xD4) | 192,774 |
C12.204(C2xD4) = C2xC12.D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.204(C2xD4) | 192,775 |
C12.205(C2xD4) = (C2xC6):8D8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.205(C2xD4) | 192,776 |
C12.206(C2xD4) = (C3xD4).31D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.206(C2xD4) | 192,777 |
C12.207(C2xD4) = C2xQ8:2Dic3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 192 | | C12.207(C2xD4) | 192,783 |
C12.208(C2xD4) = (C6xQ8):6C4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.208(C2xD4) | 192,784 |
C12.209(C2xD4) = C2xC12.10D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.209(C2xD4) | 192,785 |
C12.210(C2xD4) = (C3xQ8):13D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.210(C2xD4) | 192,786 |
C12.211(C2xD4) = (C2xC6):8Q16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.211(C2xD4) | 192,787 |
C12.212(C2xD4) = C4oD4:3Dic3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.212(C2xD4) | 192,791 |
C12.213(C2xD4) = C4oD4:4Dic3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.213(C2xD4) | 192,792 |
C12.214(C2xD4) = (C6xD4).16C4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 4 | C12.214(C2xD4) | 192,796 |
C12.215(C2xD4) = (C3xD4):14D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.215(C2xD4) | 192,797 |
C12.216(C2xD4) = (C3xD4).32D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.216(C2xD4) | 192,798 |
C12.217(C2xD4) = 2+ 1+4:6S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 24 | 8+ | C12.217(C2xD4) | 192,800 |
C12.218(C2xD4) = 2+ 1+4.4S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.218(C2xD4) | 192,801 |
C12.219(C2xD4) = 2- 1+4:4S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.219(C2xD4) | 192,804 |
C12.220(C2xD4) = 2- 1+4.2S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.220(C2xD4) | 192,805 |
C12.221(C2xD4) = C2xC4.D12 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.221(C2xD4) | 192,1068 |
C12.222(C2xD4) = C6.2+ 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.222(C2xD4) | 192,1069 |
C12.223(C2xD4) = C42:10D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.223(C2xD4) | 192,1083 |
C12.224(C2xD4) = Dic6:19D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.224(C2xD4) | 192,1157 |
C12.225(C2xD4) = Dic6:20D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.225(C2xD4) | 192,1158 |
C12.226(C2xD4) = C4:C4:21D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.226(C2xD4) | 192,1165 |
C12.227(C2xD4) = C6.382+ 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.227(C2xD4) | 192,1166 |
C12.228(C2xD4) = C6.722- 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.228(C2xD4) | 192,1167 |
C12.229(C2xD4) = D12:20D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.229(C2xD4) | 192,1171 |
C12.230(C2xD4) = S3xC22:Q8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.230(C2xD4) | 192,1185 |
C12.231(C2xD4) = C4:C4:26D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.231(C2xD4) | 192,1186 |
C12.232(C2xD4) = C6.162- 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.232(C2xD4) | 192,1187 |
C12.233(C2xD4) = C6.172- 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.233(C2xD4) | 192,1188 |
C12.234(C2xD4) = D12:21D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.234(C2xD4) | 192,1189 |
C12.235(C2xD4) = D12:22D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.235(C2xD4) | 192,1190 |
C12.236(C2xD4) = Dic6:21D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.236(C2xD4) | 192,1191 |
C12.237(C2xD4) = Dic6:22D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.237(C2xD4) | 192,1192 |
C12.238(C2xD4) = C2xC8:D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.238(C2xD4) | 192,1305 |
C12.239(C2xD4) = C24.9C23 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 4 | C12.239(C2xD4) | 192,1307 |
C12.240(C2xD4) = S3xC8:C22 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 24 | 8+ | C12.240(C2xD4) | 192,1331 |
C12.241(C2xD4) = D8:4D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.241(C2xD4) | 192,1332 |
C12.242(C2xD4) = D8:5D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.242(C2xD4) | 192,1333 |
C12.243(C2xD4) = D8:6D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.243(C2xD4) | 192,1334 |
C12.244(C2xD4) = S3xC8.C22 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.244(C2xD4) | 192,1335 |
C12.245(C2xD4) = D24:C22 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.245(C2xD4) | 192,1336 |
C12.246(C2xD4) = C24.C23 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.246(C2xD4) | 192,1337 |
C12.247(C2xD4) = SD16.D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 8- | C12.247(C2xD4) | 192,1338 |
C12.248(C2xD4) = C22xD4:S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.248(C2xD4) | 192,1351 |
C12.249(C2xD4) = C2xD12:6C22 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.249(C2xD4) | 192,1352 |
C12.250(C2xD4) = C22xD4.S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.250(C2xD4) | 192,1353 |
C12.251(C2xD4) = C2xC23.12D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.251(C2xD4) | 192,1356 |
C12.252(C2xD4) = C24.52D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.252(C2xD4) | 192,1364 |
C12.253(C2xD4) = C24.53D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.253(C2xD4) | 192,1365 |
C12.254(C2xD4) = C22xQ8:2S3 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.254(C2xD4) | 192,1366 |
C12.255(C2xD4) = C2xQ8.11D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.255(C2xD4) | 192,1367 |
C12.256(C2xD4) = C22xC3:Q16 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 192 | | C12.256(C2xD4) | 192,1368 |
C12.257(C2xD4) = C2xDic3:Q8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 192 | | C12.257(C2xD4) | 192,1369 |
C12.258(C2xD4) = C2xD6:3Q8 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.258(C2xD4) | 192,1372 |
C12.259(C2xD4) = C2xC12.23D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.259(C2xD4) | 192,1373 |
C12.260(C2xD4) = Q8xC3:D4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.260(C2xD4) | 192,1374 |
C12.261(C2xD4) = C6.442- 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.261(C2xD4) | 192,1375 |
C12.262(C2xD4) = C6.452- 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.262(C2xD4) | 192,1376 |
C12.263(C2xD4) = C2xQ8.13D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.263(C2xD4) | 192,1380 |
C12.264(C2xD4) = C6.1042- 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.264(C2xD4) | 192,1383 |
C12.265(C2xD4) = (C2xD4):43D6 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.265(C2xD4) | 192,1387 |
C12.266(C2xD4) = C6.1452+ 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | | C12.266(C2xD4) | 192,1388 |
C12.267(C2xD4) = C6.1072- 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.267(C2xD4) | 192,1390 |
C12.268(C2xD4) = C6.1482+ 1+4 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | | C12.268(C2xD4) | 192,1393 |
C12.269(C2xD4) = D12.32C23 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.269(C2xD4) | 192,1394 |
C12.270(C2xD4) = D12.33C23 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8- | C12.270(C2xD4) | 192,1395 |
C12.271(C2xD4) = D12.34C23 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 48 | 8+ | C12.271(C2xD4) | 192,1396 |
C12.272(C2xD4) = D12.35C23 | φ: C2xD4/C22 → C22 ⊆ Aut C12 | 96 | 8- | C12.272(C2xD4) | 192,1397 |
C12.273(C2xD4) = C8:5D12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.273(C2xD4) | 192,252 |
C12.274(C2xD4) = C12:4D8 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.274(C2xD4) | 192,254 |
C12.275(C2xD4) = C8.8D12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.275(C2xD4) | 192,255 |
C12.276(C2xD4) = C12:4Q16 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.276(C2xD4) | 192,258 |
C12.277(C2xD4) = C8:D12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.277(C2xD4) | 192,271 |
C12.278(C2xD4) = C8.D12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.278(C2xD4) | 192,274 |
C12.279(C2xD4) = C2xD48 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.279(C2xD4) | 192,461 |
C12.280(C2xD4) = C2xC48:C2 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.280(C2xD4) | 192,462 |
C12.281(C2xD4) = D48:7C2 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | 2 | C12.281(C2xD4) | 192,463 |
C12.282(C2xD4) = C2xDic24 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.282(C2xD4) | 192,464 |
C12.283(C2xD4) = C16:D6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | 4+ | C12.283(C2xD4) | 192,467 |
C12.284(C2xD4) = C16.D6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | 4- | C12.284(C2xD4) | 192,468 |
C12.285(C2xD4) = C2xC12:2Q8 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.285(C2xD4) | 192,1027 |
C12.286(C2xD4) = C2xC42:7S3 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.286(C2xD4) | 192,1035 |
C12.287(C2xD4) = C42:11D6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | | C12.287(C2xD4) | 192,1084 |
C12.288(C2xD4) = C42.92D6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.288(C2xD4) | 192,1085 |
C12.289(C2xD4) = C22xC24:C2 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.289(C2xD4) | 192,1298 |
C12.290(C2xD4) = C22xD24 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.290(C2xD4) | 192,1299 |
C12.291(C2xD4) = C2xC4oD24 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.291(C2xD4) | 192,1300 |
C12.292(C2xD4) = C22xDic12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.292(C2xD4) | 192,1301 |
C12.293(C2xD4) = C2xC8.D6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.293(C2xD4) | 192,1306 |
C12.294(C2xD4) = C8xD12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.294(C2xD4) | 192,245 |
C12.295(C2xD4) = C8:6D12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.295(C2xD4) | 192,247 |
C12.296(C2xD4) = D24:11C4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | 2 | C12.296(C2xD4) | 192,259 |
C12.297(C2xD4) = C8:9D12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.297(C2xD4) | 192,265 |
C12.298(C2xD4) = D24:4C4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | 4 | C12.298(C2xD4) | 192,276 |
C12.299(C2xD4) = C2xC12:C8 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.299(C2xD4) | 192,482 |
C12.300(C2xD4) = C12:7M4(2) | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.300(C2xD4) | 192,483 |
C12.301(C2xD4) = C2xC42:4S3 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | | C12.301(C2xD4) | 192,486 |
C12.302(C2xD4) = C42.43D6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.302(C2xD4) | 192,558 |
C12.303(C2xD4) = C42:6D6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | 4 | C12.303(C2xD4) | 192,564 |
C12.304(C2xD4) = C2xC24.C4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.304(C2xD4) | 192,666 |
C12.305(C2xD4) = C23.9Dic6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | 4 | C12.305(C2xD4) | 192,684 |
C12.306(C2xD4) = D6:6M4(2) | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | | C12.306(C2xD4) | 192,685 |
C12.307(C2xD4) = C42.276D6 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.307(C2xD4) | 192,1036 |
C12.308(C2xD4) = C3xC8:5D4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.308(C2xD4) | 192,925 |
C12.309(C2xD4) = C3xC8:4D4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.309(C2xD4) | 192,926 |
C12.310(C2xD4) = C3xC4:Q16 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.310(C2xD4) | 192,927 |
C12.311(C2xD4) = C3xC8.12D4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.311(C2xD4) | 192,928 |
C12.312(C2xD4) = C3xC8:3D4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.312(C2xD4) | 192,929 |
C12.313(C2xD4) = C3xC8.2D4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.313(C2xD4) | 192,930 |
C12.314(C2xD4) = C6xD16 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.314(C2xD4) | 192,938 |
C12.315(C2xD4) = C6xSD32 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.315(C2xD4) | 192,939 |
C12.316(C2xD4) = C6xQ32 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.316(C2xD4) | 192,940 |
C12.317(C2xD4) = C3xC4oD16 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | 2 | C12.317(C2xD4) | 192,941 |
C12.318(C2xD4) = C3xC16:C22 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | 4 | C12.318(C2xD4) | 192,942 |
C12.319(C2xD4) = C3xQ32:C2 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | 4 | C12.319(C2xD4) | 192,943 |
C12.320(C2xD4) = C6xC4.4D4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.320(C2xD4) | 192,1415 |
C12.321(C2xD4) = C6xC4:Q8 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.321(C2xD4) | 192,1420 |
C12.322(C2xD4) = C3xC22.26C24 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.322(C2xD4) | 192,1421 |
C12.323(C2xD4) = C3xC22.29C24 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | | C12.323(C2xD4) | 192,1424 |
C12.324(C2xD4) = C3xC23.38C23 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.324(C2xD4) | 192,1425 |
C12.325(C2xD4) = C2xC6xD8 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.325(C2xD4) | 192,1458 |
C12.326(C2xD4) = C2xC6xSD16 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.326(C2xD4) | 192,1459 |
C12.327(C2xD4) = C2xC6xQ16 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 192 | | C12.327(C2xD4) | 192,1460 |
C12.328(C2xD4) = C6xC4oD8 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.328(C2xD4) | 192,1461 |
C12.329(C2xD4) = C6xC8:C22 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 48 | | C12.329(C2xD4) | 192,1462 |
C12.330(C2xD4) = C6xC8.C22 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C12 | 96 | | C12.330(C2xD4) | 192,1463 |
C12.331(C2xD4) = D12.31D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.331(C2xD4) | 192,290 |
C12.332(C2xD4) = D12:13D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.332(C2xD4) | 192,291 |
C12.333(C2xD4) = D12.32D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.333(C2xD4) | 192,292 |
C12.334(C2xD4) = D12:14D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.334(C2xD4) | 192,293 |
C12.335(C2xD4) = Dic6:14D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.335(C2xD4) | 192,297 |
C12.336(C2xD4) = Dic6.32D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.336(C2xD4) | 192,298 |
C12.337(C2xD4) = Q8:5D12 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 24 | 4+ | C12.337(C2xD4) | 192,381 |
C12.338(C2xD4) = C12:SD16 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.338(C2xD4) | 192,400 |
C12.339(C2xD4) = C4:D24 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.339(C2xD4) | 192,402 |
C12.340(C2xD4) = D12.19D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.340(C2xD4) | 192,403 |
C12.341(C2xD4) = C42.36D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.341(C2xD4) | 192,404 |
C12.342(C2xD4) = Dic6:8D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.342(C2xD4) | 192,407 |
C12.343(C2xD4) = C4:Dic12 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 192 | | C12.343(C2xD4) | 192,408 |
C12.344(C2xD4) = D4xDic6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.344(C2xD4) | 192,1096 |
C12.345(C2xD4) = D12:23D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.345(C2xD4) | 192,1109 |
C12.346(C2xD4) = D12:24D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.346(C2xD4) | 192,1110 |
C12.347(C2xD4) = Dic6:23D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.347(C2xD4) | 192,1111 |
C12.348(C2xD4) = Dic6:24D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.348(C2xD4) | 192,1112 |
C12.349(C2xD4) = D8:15D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4+ | C12.349(C2xD4) | 192,1328 |
C12.350(C2xD4) = D8:11D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.350(C2xD4) | 192,1329 |
C12.351(C2xD4) = D8.10D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | 4- | C12.351(C2xD4) | 192,1330 |
C12.352(C2xD4) = S3xC22:C8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.352(C2xD4) | 192,283 |
C12.353(C2xD4) = C3:D4:C8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.353(C2xD4) | 192,284 |
C12.354(C2xD4) = D6:M4(2) | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.354(C2xD4) | 192,285 |
C12.355(C2xD4) = D6:C8:C2 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.355(C2xD4) | 192,286 |
C12.356(C2xD4) = D6:2M4(2) | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.356(C2xD4) | 192,287 |
C12.357(C2xD4) = Dic3:M4(2) | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.357(C2xD4) | 192,288 |
C12.358(C2xD4) = C3:C8:26D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.358(C2xD4) | 192,289 |
C12.359(C2xD4) = S3xC4wrC2 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 24 | 4 | C12.359(C2xD4) | 192,379 |
C12.360(C2xD4) = C42:3D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.360(C2xD4) | 192,380 |
C12.361(C2xD4) = M4(2).22D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.361(C2xD4) | 192,382 |
C12.362(C2xD4) = C42.196D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.362(C2xD4) | 192,383 |
C12.363(C2xD4) = S3xC4:C8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.363(C2xD4) | 192,391 |
C12.364(C2xD4) = D12:C8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.364(C2xD4) | 192,393 |
C12.365(C2xD4) = D6:3M4(2) | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.365(C2xD4) | 192,395 |
C12.366(C2xD4) = C12:M4(2) | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.366(C2xD4) | 192,396 |
C12.367(C2xD4) = C12:2M4(2) | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.367(C2xD4) | 192,397 |
C12.368(C2xD4) = C42.30D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.368(C2xD4) | 192,398 |
C12.369(C2xD4) = S3xC8.C4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.369(C2xD4) | 192,451 |
C12.370(C2xD4) = M4(2).25D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.370(C2xD4) | 192,452 |
C12.371(C2xD4) = D24:10C4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.371(C2xD4) | 192,453 |
C12.372(C2xD4) = D24:7C4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.372(C2xD4) | 192,454 |
C12.373(C2xD4) = D4xC3:C8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.373(C2xD4) | 192,569 |
C12.374(C2xD4) = C42.47D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.374(C2xD4) | 192,570 |
C12.375(C2xD4) = C12:3M4(2) | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.375(C2xD4) | 192,571 |
C12.376(C2xD4) = D8:5Dic3 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.376(C2xD4) | 192,755 |
C12.377(C2xD4) = D8:4Dic3 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.377(C2xD4) | 192,756 |
C12.378(C2xD4) = C42:14D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.378(C2xD4) | 192,1106 |
C12.379(C2xD4) = C42.228D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.379(C2xD4) | 192,1107 |
C12.380(C2xD4) = S3xC4oD8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.380(C2xD4) | 192,1326 |
C12.381(C2xD4) = SD16:D6 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.381(C2xD4) | 192,1327 |
C12.382(C2xD4) = C3xC22:D8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.382(C2xD4) | 192,880 |
C12.383(C2xD4) = C3xQ8:D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.383(C2xD4) | 192,881 |
C12.384(C2xD4) = C3xD4:D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.384(C2xD4) | 192,882 |
C12.385(C2xD4) = C3xC22:SD16 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.385(C2xD4) | 192,883 |
C12.386(C2xD4) = C3xC22:Q16 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.386(C2xD4) | 192,884 |
C12.387(C2xD4) = C3xD4.7D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.387(C2xD4) | 192,885 |
C12.388(C2xD4) = C3xD4:4D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 24 | 4 | C12.388(C2xD4) | 192,886 |
C12.389(C2xD4) = C3xD4.8D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.389(C2xD4) | 192,887 |
C12.390(C2xD4) = C3xD4.9D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.390(C2xD4) | 192,888 |
C12.391(C2xD4) = C3xD4.10D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.391(C2xD4) | 192,889 |
C12.392(C2xD4) = C3xC4:D8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.392(C2xD4) | 192,892 |
C12.393(C2xD4) = C3xC4:SD16 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.393(C2xD4) | 192,893 |
C12.394(C2xD4) = C3xD4.D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.394(C2xD4) | 192,894 |
C12.395(C2xD4) = C3xC4:2Q16 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 192 | | C12.395(C2xD4) | 192,895 |
C12.396(C2xD4) = C3xD4.2D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.396(C2xD4) | 192,896 |
C12.397(C2xD4) = C3xQ8.D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.397(C2xD4) | 192,897 |
C12.398(C2xD4) = C3xD4.3D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.398(C2xD4) | 192,904 |
C12.399(C2xD4) = C3xD4.4D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.399(C2xD4) | 192,905 |
C12.400(C2xD4) = C3xD4.5D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | 4 | C12.400(C2xD4) | 192,906 |
C12.401(C2xD4) = C3xD4:5D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | | C12.401(C2xD4) | 192,1435 |
C12.402(C2xD4) = C3xD4:6D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.402(C2xD4) | 192,1436 |
C12.403(C2xD4) = C3xQ8:5D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.403(C2xD4) | 192,1437 |
C12.404(C2xD4) = C3xD4xQ8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.404(C2xD4) | 192,1438 |
C12.405(C2xD4) = C3xQ8:6D4 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | | C12.405(C2xD4) | 192,1439 |
C12.406(C2xD4) = C3xD4oD8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.406(C2xD4) | 192,1465 |
C12.407(C2xD4) = C3xD4oSD16 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.407(C2xD4) | 192,1466 |
C12.408(C2xD4) = C3xQ8oD8 | φ: C2xD4/D4 → C2 ⊆ Aut C12 | 96 | 4 | C12.408(C2xD4) | 192,1467 |
C12.409(C2xD4) = C2xC2.Dic12 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 192 | | C12.409(C2xD4) | 192,662 |
C12.410(C2xD4) = C2xC2.D24 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.410(C2xD4) | 192,671 |
C12.411(C2xD4) = C23.28D12 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.411(C2xD4) | 192,672 |
C12.412(C2xD4) = C24:30D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.412(C2xD4) | 192,673 |
C12.413(C2xD4) = C24:29D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.413(C2xD4) | 192,674 |
C12.414(C2xD4) = C24.82D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.414(C2xD4) | 192,675 |
C12.415(C2xD4) = C23.51D12 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.415(C2xD4) | 192,679 |
C12.416(C2xD4) = C2xC12.46D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.416(C2xD4) | 192,689 |
C12.417(C2xD4) = C23.53D12 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.417(C2xD4) | 192,690 |
C12.418(C2xD4) = M4(2).31D6 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.418(C2xD4) | 192,691 |
C12.419(C2xD4) = C23.54D12 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.419(C2xD4) | 192,692 |
C12.420(C2xD4) = C24:2D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.420(C2xD4) | 192,693 |
C12.421(C2xD4) = C24:3D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.421(C2xD4) | 192,694 |
C12.422(C2xD4) = C2xC12.47D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.422(C2xD4) | 192,695 |
C12.423(C2xD4) = C24.4D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.423(C2xD4) | 192,696 |
C12.424(C2xD4) = C2xC12.48D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.424(C2xD4) | 192,1343 |
C12.425(C2xD4) = C24.83D6 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.425(C2xD4) | 192,1350 |
C12.426(C2xD4) = C2xD4:D6 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.426(C2xD4) | 192,1379 |
C12.427(C2xD4) = C12.C24 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.427(C2xD4) | 192,1381 |
C12.428(C2xD4) = C2xQ8.14D6 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.428(C2xD4) | 192,1382 |
C12.429(C2xD4) = C6.1052- 1+4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.429(C2xD4) | 192,1384 |
C12.430(C2xD4) = C6.1462+ 1+4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.430(C2xD4) | 192,1389 |
C12.431(C2xD4) = C6.1082- 1+4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.431(C2xD4) | 192,1392 |
C12.432(C2xD4) = C2xDic3:C8 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 192 | | C12.432(C2xD4) | 192,658 |
C12.433(C2xD4) = Dic3:C8:C2 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.433(C2xD4) | 192,661 |
C12.434(C2xD4) = C2xD6:C8 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.434(C2xD4) | 192,667 |
C12.435(C2xD4) = C8xC3:D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.435(C2xD4) | 192,668 |
C12.436(C2xD4) = (C22xC8):7S3 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.436(C2xD4) | 192,669 |
C12.437(C2xD4) = C24:33D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.437(C2xD4) | 192,670 |
C12.438(C2xD4) = Dic3:4M4(2) | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.438(C2xD4) | 192,677 |
C12.439(C2xD4) = C12.88(C2xQ8) | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.439(C2xD4) | 192,678 |
C12.440(C2xD4) = C2xC12.53D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.440(C2xD4) | 192,682 |
C12.441(C2xD4) = C23.8Dic6 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.441(C2xD4) | 192,683 |
C12.442(C2xD4) = C24:D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.442(C2xD4) | 192,686 |
C12.443(C2xD4) = C24:21D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.443(C2xD4) | 192,687 |
C12.444(C2xD4) = D6:C8:40C2 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.444(C2xD4) | 192,688 |
C12.445(C2xD4) = C2xD12:C4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.445(C2xD4) | 192,697 |
C12.446(C2xD4) = M4(2):24D6 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.446(C2xD4) | 192,698 |
C12.447(C2xD4) = C24.100D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.447(C2xD4) | 192,703 |
C12.448(C2xD4) = C24.54D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.448(C2xD4) | 192,704 |
C12.449(C2xD4) = C2xC12.55D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.449(C2xD4) | 192,765 |
C12.450(C2xD4) = C24.6Dic3 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.450(C2xD4) | 192,766 |
C12.451(C2xD4) = (C6xD4).11C4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.451(C2xD4) | 192,793 |
C12.452(C2xD4) = C2xQ8:3Dic3 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.452(C2xD4) | 192,794 |
C12.453(C2xD4) = (C6xD4):9C4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.453(C2xD4) | 192,795 |
C12.454(C2xD4) = (C2xC12):17D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.454(C2xD4) | 192,1391 |
C12.455(C2xD4) = C6xC4.D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.455(C2xD4) | 192,844 |
C12.456(C2xD4) = C6xC4.10D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.456(C2xD4) | 192,845 |
C12.457(C2xD4) = C3xM4(2).8C22 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.457(C2xD4) | 192,846 |
C12.458(C2xD4) = C6xD4:C4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.458(C2xD4) | 192,847 |
C12.459(C2xD4) = C6xQ8:C4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 192 | | C12.459(C2xD4) | 192,848 |
C12.460(C2xD4) = C3xC23.24D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.460(C2xD4) | 192,849 |
C12.461(C2xD4) = C3xC23.36D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.461(C2xD4) | 192,850 |
C12.462(C2xD4) = C3xC23.37D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.462(C2xD4) | 192,851 |
C12.463(C2xD4) = C3xC23.38D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.463(C2xD4) | 192,852 |
C12.464(C2xD4) = C3xC8:8D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.464(C2xD4) | 192,898 |
C12.465(C2xD4) = C3xC8:7D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.465(C2xD4) | 192,899 |
C12.466(C2xD4) = C3xC8.18D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.466(C2xD4) | 192,900 |
C12.467(C2xD4) = C3xC8:D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.467(C2xD4) | 192,901 |
C12.468(C2xD4) = C3xC8:2D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.468(C2xD4) | 192,902 |
C12.469(C2xD4) = C3xC8.D4 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.469(C2xD4) | 192,903 |
C12.470(C2xD4) = C6xC22:Q8 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.470(C2xD4) | 192,1412 |
C12.471(C2xD4) = C3xC22.19C24 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | | C12.471(C2xD4) | 192,1414 |
C12.472(C2xD4) = C3xC22.31C24 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 96 | | C12.472(C2xD4) | 192,1426 |
C12.473(C2xD4) = C3xD8:C22 | φ: C2xD4/C23 → C2 ⊆ Aut C12 | 48 | 4 | C12.473(C2xD4) | 192,1464 |
C12.474(C2xD4) = C6xC22:C8 | central extension (φ=1) | 96 | | C12.474(C2xD4) | 192,839 |
C12.475(C2xD4) = C3xC24.4C4 | central extension (φ=1) | 48 | | C12.475(C2xD4) | 192,840 |
C12.476(C2xD4) = C3x(C22xC8):C2 | central extension (φ=1) | 96 | | C12.476(C2xD4) | 192,841 |
C12.477(C2xD4) = C6xC4wrC2 | central extension (φ=1) | 48 | | C12.477(C2xD4) | 192,853 |
C12.478(C2xD4) = C3xC42:C22 | central extension (φ=1) | 48 | 4 | C12.478(C2xD4) | 192,854 |
C12.479(C2xD4) = C6xC4:C8 | central extension (φ=1) | 192 | | C12.479(C2xD4) | 192,855 |
C12.480(C2xD4) = C3xC4:M4(2) | central extension (φ=1) | 96 | | C12.480(C2xD4) | 192,856 |
C12.481(C2xD4) = C3xC42.6C22 | central extension (φ=1) | 96 | | C12.481(C2xD4) | 192,857 |
C12.482(C2xD4) = C6xC8.C4 | central extension (φ=1) | 96 | | C12.482(C2xD4) | 192,862 |
C12.483(C2xD4) = C3xM4(2).C4 | central extension (φ=1) | 48 | 4 | C12.483(C2xD4) | 192,863 |
C12.484(C2xD4) = D4xC24 | central extension (φ=1) | 96 | | C12.484(C2xD4) | 192,867 |
C12.485(C2xD4) = C3xC8:9D4 | central extension (φ=1) | 96 | | C12.485(C2xD4) | 192,868 |
C12.486(C2xD4) = C3xC8:6D4 | central extension (φ=1) | 96 | | C12.486(C2xD4) | 192,869 |
C12.487(C2xD4) = C3xC8oD8 | central extension (φ=1) | 48 | 2 | C12.487(C2xD4) | 192,876 |
C12.488(C2xD4) = C3xC8.26D4 | central extension (φ=1) | 48 | 4 | C12.488(C2xD4) | 192,877 |