Copied to
clipboard

?

G = D4×C2×C12order 192 = 26·3

Direct product of C2×C12 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C2×C12, (C23×C4)⋊7C6, (C23×C12)⋊6C2, C127(C22×C4), C41(C22×C12), (C2×C42)⋊10C6, C235(C2×C12), C4220(C2×C6), (C4×C12)⋊57C22, C2.4(C23×C12), C6.56(C23×C4), C24.36(C2×C6), C22.59(C6×D4), (C2×C6).335C24, C222(C22×C12), (C22×D4).14C6, C6.179(C22×D4), C22.8(C23×C6), (C2×C12).707C23, (C22×C12)⋊58C22, (C6×D4).330C22, (C23×C6).90C22, C23.32(C22×C6), (C22×C6).252C23, C2.3(D4×C2×C6), (C2×C4×C12)⋊20C2, (C6×C4⋊C4)⋊52C2, (C2×C4⋊C4)⋊25C6, C4⋊C419(C2×C6), (C2×C4)⋊7(C2×C12), (D4×C2×C6).26C2, C2.2(C6×C4○D4), (C2×C12)⋊32(C2×C4), (C2×C6)⋊5(C22×C4), (C6×C22⋊C4)⋊36C2, C22⋊C417(C2×C6), (C3×C4⋊C4)⋊76C22, (C2×C22⋊C4)⋊16C6, (C22×C6)⋊13(C2×C4), (C22×C4)⋊18(C2×C6), (C2×D4).76(C2×C6), C6.221(C2×C4○D4), (C2×C6).681(C2×D4), (C2×C4).54(C22×C6), C22.27(C3×C4○D4), (C2×C6).227(C4○D4), (C3×C22⋊C4)⋊71C22, SmallGroup(192,1404)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C2×C12
C1C2C22C2×C6C2×C12C3×C22⋊C4D4×C12 — D4×C2×C12
C1C2 — D4×C2×C12
C1C22×C12 — D4×C2×C12

Subgroups: 578 in 426 conjugacy classes, 274 normal (26 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C3, C4 [×8], C4 [×6], C22, C22 [×14], C22 [×24], C6 [×3], C6 [×4], C6 [×8], C2×C4 [×18], C2×C4 [×22], D4 [×16], C23, C23 [×12], C23 [×8], C12 [×8], C12 [×6], C2×C6, C2×C6 [×14], C2×C6 [×24], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×3], C22×C4 [×10], C22×C4 [×8], C2×D4 [×12], C24 [×2], C2×C12 [×18], C2×C12 [×22], C3×D4 [×16], C22×C6, C22×C6 [×12], C22×C6 [×8], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4 [×8], C23×C4 [×2], C22×D4, C4×C12 [×4], C3×C22⋊C4 [×8], C3×C4⋊C4 [×4], C22×C12 [×3], C22×C12 [×10], C22×C12 [×8], C6×D4 [×12], C23×C6 [×2], C2×C4×D4, C2×C4×C12, C6×C22⋊C4 [×2], C6×C4⋊C4, D4×C12 [×8], C23×C12 [×2], D4×C2×C6, D4×C2×C12

Quotients:
C1, C2 [×15], C3, C4 [×8], C22 [×35], C6 [×15], C2×C4 [×28], D4 [×4], C23 [×15], C12 [×8], C2×C6 [×35], C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, C2×C12 [×28], C3×D4 [×4], C22×C6 [×15], C4×D4 [×4], C23×C4, C22×D4, C2×C4○D4, C22×C12 [×14], C6×D4 [×6], C3×C4○D4 [×2], C23×C6, C2×C4×D4, D4×C12 [×4], C23×C12, D4×C2×C6, C6×C4○D4, D4×C2×C12

Generators and relations
 G = < a,b,c,d | a2=b12=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 96 points
Generators in S96
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 25)(10 26)(11 27)(12 28)(13 62)(14 63)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 70)(22 71)(23 72)(24 61)(37 58)(38 59)(39 60)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(46 55)(47 56)(48 57)(73 92)(74 93)(75 94)(76 95)(77 96)(78 85)(79 86)(80 87)(81 88)(82 89)(83 90)(84 91)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 82 67 45)(2 83 68 46)(3 84 69 47)(4 73 70 48)(5 74 71 37)(6 75 72 38)(7 76 61 39)(8 77 62 40)(9 78 63 41)(10 79 64 42)(11 80 65 43)(12 81 66 44)(13 49 36 96)(14 50 25 85)(15 51 26 86)(16 52 27 87)(17 53 28 88)(18 54 29 89)(19 55 30 90)(20 56 31 91)(21 57 32 92)(22 58 33 93)(23 59 34 94)(24 60 35 95)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 13)(9 14)(10 15)(11 16)(12 17)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 61)(36 62)(37 58)(38 59)(39 60)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(46 55)(47 56)(48 57)(73 92)(74 93)(75 94)(76 95)(77 96)(78 85)(79 86)(80 87)(81 88)(82 89)(83 90)(84 91)

G:=sub<Sym(96)| (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,61)(37,58)(38,59)(39,60)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)(73,92)(74,93)(75,94)(76,95)(77,96)(78,85)(79,86)(80,87)(81,88)(82,89)(83,90)(84,91), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,82,67,45)(2,83,68,46)(3,84,69,47)(4,73,70,48)(5,74,71,37)(6,75,72,38)(7,76,61,39)(8,77,62,40)(9,78,63,41)(10,79,64,42)(11,80,65,43)(12,81,66,44)(13,49,36,96)(14,50,25,85)(15,51,26,86)(16,52,27,87)(17,53,28,88)(18,54,29,89)(19,55,30,90)(20,56,31,91)(21,57,32,92)(22,58,33,93)(23,59,34,94)(24,60,35,95), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,13)(9,14)(10,15)(11,16)(12,17)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,61)(36,62)(37,58)(38,59)(39,60)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)(73,92)(74,93)(75,94)(76,95)(77,96)(78,85)(79,86)(80,87)(81,88)(82,89)(83,90)(84,91)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,61)(37,58)(38,59)(39,60)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)(73,92)(74,93)(75,94)(76,95)(77,96)(78,85)(79,86)(80,87)(81,88)(82,89)(83,90)(84,91), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,82,67,45)(2,83,68,46)(3,84,69,47)(4,73,70,48)(5,74,71,37)(6,75,72,38)(7,76,61,39)(8,77,62,40)(9,78,63,41)(10,79,64,42)(11,80,65,43)(12,81,66,44)(13,49,36,96)(14,50,25,85)(15,51,26,86)(16,52,27,87)(17,53,28,88)(18,54,29,89)(19,55,30,90)(20,56,31,91)(21,57,32,92)(22,58,33,93)(23,59,34,94)(24,60,35,95), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,13)(9,14)(10,15)(11,16)(12,17)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,61)(36,62)(37,58)(38,59)(39,60)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)(73,92)(74,93)(75,94)(76,95)(77,96)(78,85)(79,86)(80,87)(81,88)(82,89)(83,90)(84,91) );

G=PermutationGroup([(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,25),(10,26),(11,27),(12,28),(13,62),(14,63),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,70),(22,71),(23,72),(24,61),(37,58),(38,59),(39,60),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(46,55),(47,56),(48,57),(73,92),(74,93),(75,94),(76,95),(77,96),(78,85),(79,86),(80,87),(81,88),(82,89),(83,90),(84,91)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,82,67,45),(2,83,68,46),(3,84,69,47),(4,73,70,48),(5,74,71,37),(6,75,72,38),(7,76,61,39),(8,77,62,40),(9,78,63,41),(10,79,64,42),(11,80,65,43),(12,81,66,44),(13,49,36,96),(14,50,25,85),(15,51,26,86),(16,52,27,87),(17,53,28,88),(18,54,29,89),(19,55,30,90),(20,56,31,91),(21,57,32,92),(22,58,33,93),(23,59,34,94),(24,60,35,95)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,13),(9,14),(10,15),(11,16),(12,17),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,61),(36,62),(37,58),(38,59),(39,60),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(46,55),(47,56),(48,57),(73,92),(74,93),(75,94),(76,95),(77,96),(78,85),(79,86),(80,87),(81,88),(82,89),(83,90),(84,91)])

Matrix representation G ⊆ GL4(𝔽13) generated by

1000
01200
00120
00012
,
2000
0500
0090
0009
,
12000
0100
00012
0010
,
12000
0100
0010
00012
G:=sub<GL(4,GF(13))| [1,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[2,0,0,0,0,5,0,0,0,0,9,0,0,0,0,9],[12,0,0,0,0,1,0,0,0,0,0,1,0,0,12,0],[12,0,0,0,0,1,0,0,0,0,1,0,0,0,0,12] >;

120 conjugacy classes

class 1 2A···2G2H···2O3A3B4A···4H4I···4X6A···6N6O···6AD12A···12P12Q···12AV
order12···22···2334···44···46···66···612···1212···12
size11···12···2111···12···21···12···21···12···2

120 irreducible representations

dim11111111111111112222
type++++++++
imageC1C2C2C2C2C2C2C3C4C6C6C6C6C6C6C12D4C4○D4C3×D4C3×C4○D4
kernelD4×C2×C12C2×C4×C12C6×C22⋊C4C6×C4⋊C4D4×C12C23×C12D4×C2×C6C2×C4×D4C6×D4C2×C42C2×C22⋊C4C2×C4⋊C4C4×D4C23×C4C22×D4C2×D4C2×C12C2×C6C2×C4C22
# reps11218212162421642324488

In GAP, Magma, Sage, TeX

D_4\times C_2\times C_{12}
% in TeX

G:=Group("D4xC2xC12");
// GroupNames label

G:=SmallGroup(192,1404);
// by ID

G=gap.SmallGroup(192,1404);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,520]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽