# Extensions 1→N→G→Q→1 with N=C3×Q16 and Q=C22

Direct product G=N×Q with N=C3×Q16 and Q=C22
dρLabelID
C2×C6×Q16192C2xC6xQ16192,1460

Semidirect products G=N:Q with N=C3×Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×Q16)⋊1C22 = S3×C8.C22φ: C22/C1C22 ⊆ Out C3×Q16488-(C3xQ16):1C2^2192,1335
(C3×Q16)⋊2C22 = D24⋊C22φ: C22/C1C22 ⊆ Out C3×Q16488+(C3xQ16):2C2^2192,1336
(C3×Q16)⋊3C22 = C24.C23φ: C22/C1C22 ⊆ Out C3×Q16488+(C3xQ16):3C2^2192,1337
(C3×Q16)⋊4C22 = S3×SD32φ: C22/C1C22 ⊆ Out C3×Q16484(C3xQ16):4C2^2192,472
(C3×Q16)⋊5C22 = D48⋊C2φ: C22/C1C22 ⊆ Out C3×Q16484+(C3xQ16):5C2^2192,473
(C3×Q16)⋊6C22 = C2×C8.6D6φ: C22/C2C2 ⊆ Out C3×Q1696(C3xQ16):6C2^2192,737
(C3×Q16)⋊7C22 = Q16⋊D6φ: C22/C2C2 ⊆ Out C3×Q16484+(C3xQ16):7C2^2192,752
(C3×Q16)⋊8C22 = C2×S3×Q16φ: C22/C2C2 ⊆ Out C3×Q1696(C3xQ16):8C2^2192,1322
(C3×Q16)⋊9C22 = C2×D24⋊C2φ: C22/C2C2 ⊆ Out C3×Q1696(C3xQ16):9C2^2192,1324
(C3×Q16)⋊10C22 = S3×C4○D8φ: C22/C2C2 ⊆ Out C3×Q16484(C3xQ16):10C2^2192,1326
(C3×Q16)⋊11C22 = D815D6φ: C22/C2C2 ⊆ Out C3×Q16484+(C3xQ16):11C2^2192,1328
(C3×Q16)⋊12C22 = C2×Q16⋊S3φ: C22/C2C2 ⊆ Out C3×Q1696(C3xQ16):12C2^2192,1323
(C3×Q16)⋊13C22 = SD16⋊D6φ: C22/C2C2 ⊆ Out C3×Q16484(C3xQ16):13C2^2192,1327
(C3×Q16)⋊14C22 = D811D6φ: C22/C2C2 ⊆ Out C3×Q16484(C3xQ16):14C2^2192,1329
(C3×Q16)⋊15C22 = C6×SD32φ: C22/C2C2 ⊆ Out C3×Q1696(C3xQ16):15C2^2192,939
(C3×Q16)⋊16C22 = C3×C16⋊C22φ: C22/C2C2 ⊆ Out C3×Q16484(C3xQ16):16C2^2192,942
(C3×Q16)⋊17C22 = C6×C8.C22φ: C22/C2C2 ⊆ Out C3×Q1696(C3xQ16):17C2^2192,1463
(C3×Q16)⋊18C22 = C3×D8⋊C22φ: C22/C2C2 ⊆ Out C3×Q16484(C3xQ16):18C2^2192,1464
(C3×Q16)⋊19C22 = C3×D4○SD16φ: C22/C2C2 ⊆ Out C3×Q16484(C3xQ16):19C2^2192,1466
(C3×Q16)⋊20C22 = C6×C4○D8φ: trivial image96(C3xQ16):20C2^2192,1461
(C3×Q16)⋊21C22 = C3×D4○D8φ: trivial image484(C3xQ16):21C2^2192,1465

Non-split extensions G=N.Q with N=C3×Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×Q16).1C22 = SD16.D6φ: C22/C1C22 ⊆ Out C3×Q16968-(C3xQ16).1C2^2192,1338
(C3×Q16).2C22 = SD32⋊S3φ: C22/C1C22 ⊆ Out C3×Q16964-(C3xQ16).2C2^2192,474
(C3×Q16).3C22 = D6.2D8φ: C22/C1C22 ⊆ Out C3×Q16964(C3xQ16).3C2^2192,475
(C3×Q16).4C22 = S3×Q32φ: C22/C1C22 ⊆ Out C3×Q16964-(C3xQ16).4C2^2192,476
(C3×Q16).5C22 = Q32⋊S3φ: C22/C1C22 ⊆ Out C3×Q16964(C3xQ16).5C2^2192,477
(C3×Q16).6C22 = D485C2φ: C22/C1C22 ⊆ Out C3×Q16964+(C3xQ16).6C2^2192,478
(C3×Q16).7C22 = C24.27C23φ: C22/C2C2 ⊆ Out C3×Q16964(C3xQ16).7C2^2192,738
(C3×Q16).8C22 = C2×C3⋊Q32φ: C22/C2C2 ⊆ Out C3×Q16192(C3xQ16).8C2^2192,739
(C3×Q16).9C22 = Q16.D6φ: C22/C2C2 ⊆ Out C3×Q16964(C3xQ16).9C2^2192,753
(C3×Q16).10C22 = D8.9D6φ: C22/C2C2 ⊆ Out C3×Q16964-(C3xQ16).10C2^2192,754
(C3×Q16).11C22 = D12.30D4φ: C22/C2C2 ⊆ Out C3×Q16964(C3xQ16).11C2^2192,1325
(C3×Q16).12C22 = D8.10D6φ: C22/C2C2 ⊆ Out C3×Q16964-(C3xQ16).12C2^2192,1330
(C3×Q16).13C22 = C6×Q32φ: C22/C2C2 ⊆ Out C3×Q16192(C3xQ16).13C2^2192,940
(C3×Q16).14C22 = C3×C4○D16φ: C22/C2C2 ⊆ Out C3×Q16962(C3xQ16).14C2^2192,941
(C3×Q16).15C22 = C3×Q32⋊C2φ: C22/C2C2 ⊆ Out C3×Q16964(C3xQ16).15C2^2192,943
(C3×Q16).16C22 = C3×Q8○D8φ: C22/C2C2 ⊆ Out C3×Q16964(C3xQ16).16C2^2192,1467

׿
×
𝔽