Copied to
clipboard

G = C2×A4⋊Q8order 192 = 26·3

Direct product of C2 and A4⋊Q8

direct product, non-abelian, soluble, monomial

Aliases: C2×A4⋊Q8, C23⋊Dic6, C24.7D6, (C2×A4)⋊Q8, A41(C2×Q8), C4.22(C2×S4), (C2×C4).16S4, C22⋊(C2×Dic6), C2.3(C22×S4), (C23×C4).6S3, A4⋊C4.1C22, (C2×A4).1C23, C22.22(C2×S4), (C22×C4).16D6, (C4×A4).11C22, C23.1(C22×S3), (C22×A4).8C22, (C2×C4×A4).3C2, (C2×A4⋊C4).3C2, SmallGroup(192,1468)

Series: Derived Chief Lower central Upper central

C1C22C2×A4 — C2×A4⋊Q8
C1C22A4C2×A4A4⋊C4C2×A4⋊C4 — C2×A4⋊Q8
A4C2×A4 — C2×A4⋊Q8
C1C22C2×C4

Generators and relations for C2×A4⋊Q8
 G = < a,b,c,d,e,f | a2=b2=c2=d3=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, dbd-1=fbf-1=bc=cb, be=eb, dcd-1=b, ce=ec, cf=fc, de=ed, fdf-1=d-1, fef-1=e-1 >

Subgroups: 534 in 165 conjugacy classes, 35 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C2×C4, C2×C4, Q8, C23, C23, C23, Dic3, C12, A4, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic6, C2×Dic3, C2×C12, C2×A4, C2×A4, C2×C22⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×Q8, A4⋊C4, C4×A4, C2×Dic6, C22×A4, C2×C22⋊Q8, A4⋊Q8, C2×A4⋊C4, C2×C4×A4, C2×A4⋊Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, Dic6, S4, C22×S3, C2×Dic6, C2×S4, A4⋊Q8, C22×S4, C2×A4⋊Q8

Character table of C2×A4⋊Q8

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F4G4H4I4J4K4L6A6B6C12A12B12C12D
 size 111133338226612121212121212128888888
ρ11111111111111111111111111111    trivial
ρ2111111111-1-1-1-1-111-1-111-1111-1-1-1-1    linear of order 2
ρ311-1-1-1-11111-11-11-1-1-1-11111-1-1-1-111    linear of order 2
ρ411-1-1-1-1111-11-11-1-1-11111-11-1-111-1-1    linear of order 2
ρ51111111111111-1-1-1-1-1-1-1-11111111    linear of order 2
ρ6111111111-1-1-1-11-1-111-1-11111-1-1-1-1    linear of order 2
ρ711-1-1-1-11111-11-1-11111-1-1-11-1-1-1-111    linear of order 2
ρ811-1-1-1-1111-11-11111-1-1-1-111-1-111-1-1    linear of order 2
ρ922222222-1-2-2-2-200000000-1-1-11111    orthogonal lifted from D6
ρ1022-2-2-2-222-12-22-200000000-11111-1-1    orthogonal lifted from D6
ρ1122222222-1222200000000-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1222-2-2-2-222-1-22-2200000000-111-1-111    orthogonal lifted from D6
ρ132-2-222-2-222000000000000-2-220000    symplectic lifted from Q8, Schur index 2
ρ142-22-2-22-222000000000000-22-20000    symplectic lifted from Q8, Schur index 2
ρ152-22-2-22-22-10000000000001-113-3-33    symplectic lifted from Dic6, Schur index 2
ρ162-22-2-22-22-10000000000001-11-333-3    symplectic lifted from Dic6, Schur index 2
ρ172-2-222-2-22-100000000000011-1-33-33    symplectic lifted from Dic6, Schur index 2
ρ182-2-222-2-22-100000000000011-13-33-3    symplectic lifted from Dic6, Schur index 2
ρ1933-3-311-1-103-3-1111-11-1-11-10000000    orthogonal lifted from C2×S4
ρ2033-3-311-1-10-331-11-111-11-1-10000000    orthogonal lifted from C2×S4
ρ213333-1-1-1-10-3-31111-1-111-1-10000000    orthogonal lifted from C2×S4
ρ223333-1-1-1-1033-1-11-11-11-11-10000000    orthogonal lifted from S4
ρ2333-3-311-1-103-3-11-1-11-111-110000000    orthogonal lifted from C2×S4
ρ2433-3-311-1-10-331-1-11-1-11-1110000000    orthogonal lifted from C2×S4
ρ253333-1-1-1-10-3-311-1-111-1-1110000000    orthogonal lifted from C2×S4
ρ263333-1-1-1-1033-1-1-11-11-11-110000000    orthogonal lifted from S4
ρ276-66-62-22-200000000000000000000    symplectic lifted from A4⋊Q8, Schur index 2
ρ286-6-66-222-200000000000000000000    symplectic lifted from A4⋊Q8, Schur index 2

Smallest permutation representation of C2×A4⋊Q8
On 48 points
Generators in S48
(1 35)(2 36)(3 33)(4 34)(5 29)(6 30)(7 31)(8 32)(9 43)(10 44)(11 41)(12 42)(13 25)(14 26)(15 27)(16 28)(17 39)(18 40)(19 37)(20 38)(21 45)(22 46)(23 47)(24 48)
(1 5)(2 6)(3 7)(4 8)(9 23)(10 24)(11 21)(12 22)(13 15)(14 16)(17 19)(18 20)(25 27)(26 28)(29 35)(30 36)(31 33)(32 34)(37 39)(38 40)(41 45)(42 46)(43 47)(44 48)
(1 3)(2 4)(5 7)(6 8)(9 21)(10 22)(11 23)(12 24)(13 40)(14 37)(15 38)(16 39)(17 28)(18 25)(19 26)(20 27)(29 31)(30 32)(33 35)(34 36)(41 47)(42 48)(43 45)(44 46)
(1 23 27)(2 24 28)(3 21 25)(4 22 26)(5 11 18)(6 12 19)(7 9 20)(8 10 17)(13 33 45)(14 34 46)(15 35 47)(16 36 48)(29 41 40)(30 42 37)(31 43 38)(32 44 39)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 5 3 7)(2 8 4 6)(9 27 11 25)(10 26 12 28)(13 43 15 41)(14 42 16 44)(17 22 19 24)(18 21 20 23)(29 33 31 35)(30 36 32 34)(37 48 39 46)(38 47 40 45)

G:=sub<Sym(48)| (1,35)(2,36)(3,33)(4,34)(5,29)(6,30)(7,31)(8,32)(9,43)(10,44)(11,41)(12,42)(13,25)(14,26)(15,27)(16,28)(17,39)(18,40)(19,37)(20,38)(21,45)(22,46)(23,47)(24,48), (1,5)(2,6)(3,7)(4,8)(9,23)(10,24)(11,21)(12,22)(13,15)(14,16)(17,19)(18,20)(25,27)(26,28)(29,35)(30,36)(31,33)(32,34)(37,39)(38,40)(41,45)(42,46)(43,47)(44,48), (1,3)(2,4)(5,7)(6,8)(9,21)(10,22)(11,23)(12,24)(13,40)(14,37)(15,38)(16,39)(17,28)(18,25)(19,26)(20,27)(29,31)(30,32)(33,35)(34,36)(41,47)(42,48)(43,45)(44,46), (1,23,27)(2,24,28)(3,21,25)(4,22,26)(5,11,18)(6,12,19)(7,9,20)(8,10,17)(13,33,45)(14,34,46)(15,35,47)(16,36,48)(29,41,40)(30,42,37)(31,43,38)(32,44,39), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,5,3,7)(2,8,4,6)(9,27,11,25)(10,26,12,28)(13,43,15,41)(14,42,16,44)(17,22,19,24)(18,21,20,23)(29,33,31,35)(30,36,32,34)(37,48,39,46)(38,47,40,45)>;

G:=Group( (1,35)(2,36)(3,33)(4,34)(5,29)(6,30)(7,31)(8,32)(9,43)(10,44)(11,41)(12,42)(13,25)(14,26)(15,27)(16,28)(17,39)(18,40)(19,37)(20,38)(21,45)(22,46)(23,47)(24,48), (1,5)(2,6)(3,7)(4,8)(9,23)(10,24)(11,21)(12,22)(13,15)(14,16)(17,19)(18,20)(25,27)(26,28)(29,35)(30,36)(31,33)(32,34)(37,39)(38,40)(41,45)(42,46)(43,47)(44,48), (1,3)(2,4)(5,7)(6,8)(9,21)(10,22)(11,23)(12,24)(13,40)(14,37)(15,38)(16,39)(17,28)(18,25)(19,26)(20,27)(29,31)(30,32)(33,35)(34,36)(41,47)(42,48)(43,45)(44,46), (1,23,27)(2,24,28)(3,21,25)(4,22,26)(5,11,18)(6,12,19)(7,9,20)(8,10,17)(13,33,45)(14,34,46)(15,35,47)(16,36,48)(29,41,40)(30,42,37)(31,43,38)(32,44,39), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,5,3,7)(2,8,4,6)(9,27,11,25)(10,26,12,28)(13,43,15,41)(14,42,16,44)(17,22,19,24)(18,21,20,23)(29,33,31,35)(30,36,32,34)(37,48,39,46)(38,47,40,45) );

G=PermutationGroup([[(1,35),(2,36),(3,33),(4,34),(5,29),(6,30),(7,31),(8,32),(9,43),(10,44),(11,41),(12,42),(13,25),(14,26),(15,27),(16,28),(17,39),(18,40),(19,37),(20,38),(21,45),(22,46),(23,47),(24,48)], [(1,5),(2,6),(3,7),(4,8),(9,23),(10,24),(11,21),(12,22),(13,15),(14,16),(17,19),(18,20),(25,27),(26,28),(29,35),(30,36),(31,33),(32,34),(37,39),(38,40),(41,45),(42,46),(43,47),(44,48)], [(1,3),(2,4),(5,7),(6,8),(9,21),(10,22),(11,23),(12,24),(13,40),(14,37),(15,38),(16,39),(17,28),(18,25),(19,26),(20,27),(29,31),(30,32),(33,35),(34,36),(41,47),(42,48),(43,45),(44,46)], [(1,23,27),(2,24,28),(3,21,25),(4,22,26),(5,11,18),(6,12,19),(7,9,20),(8,10,17),(13,33,45),(14,34,46),(15,35,47),(16,36,48),(29,41,40),(30,42,37),(31,43,38),(32,44,39)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,5,3,7),(2,8,4,6),(9,27,11,25),(10,26,12,28),(13,43,15,41),(14,42,16,44),(17,22,19,24),(18,21,20,23),(29,33,31,35),(30,36,32,34),(37,48,39,46),(38,47,40,45)]])

Matrix representation of C2×A4⋊Q8 in GL5(𝔽13)

120000
012000
001200
000120
000012
,
10000
01000
001200
000120
001201
,
10000
01000
00100
001120
001012
,
08000
812000
001011
000012
000112
,
104000
43000
001200
000120
000012
,
812000
05000
001200
000012
000120

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,12,0,0,0,12,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,12,0,0,0,0,0,12],[0,8,0,0,0,8,12,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,11,12,12],[10,4,0,0,0,4,3,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[8,0,0,0,0,12,5,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,12,0] >;

C2×A4⋊Q8 in GAP, Magma, Sage, TeX

C_2\times A_4\rtimes Q_8
% in TeX

G:=Group("C2xA4:Q8");
// GroupNames label

G:=SmallGroup(192,1468);
// by ID

G=gap.SmallGroup(192,1468);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,56,254,58,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,d*b*d^-1=f*b*f^-1=b*c=c*b,b*e=e*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d^-1,f*e*f^-1=e^-1>;
// generators/relations

Export

Character table of C2×A4⋊Q8 in TeX

׿
×
𝔽