Copied to
clipboard

G = C2×C4×S4order 192 = 26·3

Direct product of C2×C4 and S4

direct product, non-abelian, soluble, monomial

Aliases: C2×C4×S4, C24.8D6, C23⋊(C4×S3), (C23×C4)⋊2S3, (C22×C4)⋊2D6, A4⋊C43C22, A41(C22×C4), (C4×A4)⋊3C22, C2.1(C22×S4), (C22×S4).2C2, (C2×A4).2C23, (C2×S4).4C22, C22.23(C2×S4), C23.2(C22×S3), (C22×A4).9C22, C22⋊(S3×C2×C4), (C2×C4×A4)⋊5C2, (C2×A4⋊C4)⋊5C2, (C2×A4)⋊1(C2×C4), SmallGroup(192,1469)

Series: Derived Chief Lower central Upper central

C1C22A4 — C2×C4×S4
C1C22A4C2×A4C2×S4C22×S4 — C2×C4×S4
A4 — C2×C4×S4
C1C2×C4

Generators and relations for C2×C4×S4
 G = < a,b,c,d,e,f | a2=b4=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 766 in 233 conjugacy classes, 43 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, C12, A4, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, C4×S3, C2×Dic3, C2×C12, S4, C2×A4, C2×A4, C22×S3, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C23×C4, C22×D4, A4⋊C4, C4×A4, S3×C2×C4, C2×S4, C22×A4, C2×C4×D4, C4×S4, C2×A4⋊C4, C2×C4×A4, C22×S4, C2×C4×S4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4×S3, S4, C22×S3, S3×C2×C4, C2×S4, C4×S4, C22×S4, C2×C4×S4

Permutation representations of C2×C4×S4
On 24 points - transitive group 24T397
Generators in S24
(1 14)(2 15)(3 16)(4 13)(5 12)(6 9)(7 10)(8 11)(17 24)(18 21)(19 22)(20 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 16)(2 13)(3 14)(4 15)(5 10)(6 11)(7 12)(8 9)
(5 10)(6 11)(7 12)(8 9)(17 22)(18 23)(19 24)(20 21)
(1 9 23)(2 10 24)(3 11 21)(4 12 22)(5 19 13)(6 20 14)(7 17 15)(8 18 16)
(1 16)(2 13)(3 14)(4 15)(5 24)(6 21)(7 22)(8 23)(9 18)(10 19)(11 20)(12 17)

G:=sub<Sym(24)| (1,14)(2,15)(3,16)(4,13)(5,12)(6,9)(7,10)(8,11)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16)(2,13)(3,14)(4,15)(5,10)(6,11)(7,12)(8,9), (5,10)(6,11)(7,12)(8,9)(17,22)(18,23)(19,24)(20,21), (1,9,23)(2,10,24)(3,11,21)(4,12,22)(5,19,13)(6,20,14)(7,17,15)(8,18,16), (1,16)(2,13)(3,14)(4,15)(5,24)(6,21)(7,22)(8,23)(9,18)(10,19)(11,20)(12,17)>;

G:=Group( (1,14)(2,15)(3,16)(4,13)(5,12)(6,9)(7,10)(8,11)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16)(2,13)(3,14)(4,15)(5,10)(6,11)(7,12)(8,9), (5,10)(6,11)(7,12)(8,9)(17,22)(18,23)(19,24)(20,21), (1,9,23)(2,10,24)(3,11,21)(4,12,22)(5,19,13)(6,20,14)(7,17,15)(8,18,16), (1,16)(2,13)(3,14)(4,15)(5,24)(6,21)(7,22)(8,23)(9,18)(10,19)(11,20)(12,17) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,13),(5,12),(6,9),(7,10),(8,11),(17,24),(18,21),(19,22),(20,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,16),(2,13),(3,14),(4,15),(5,10),(6,11),(7,12),(8,9)], [(5,10),(6,11),(7,12),(8,9),(17,22),(18,23),(19,24),(20,21)], [(1,9,23),(2,10,24),(3,11,21),(4,12,22),(5,19,13),(6,20,14),(7,17,15),(8,18,16)], [(1,16),(2,13),(3,14),(4,15),(5,24),(6,21),(7,22),(8,23),(9,18),(10,19),(11,20),(12,17)]])

G:=TransitiveGroup(24,397);

On 24 points - transitive group 24T418
Generators in S24
(1 23)(2 24)(3 21)(4 22)(5 15)(6 16)(7 13)(8 14)(9 20)(10 17)(11 18)(12 19)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 3)(2 4)(9 11)(10 12)(17 19)(18 20)(21 23)(22 24)
(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 9 13)(2 10 14)(3 11 15)(4 12 16)(5 21 18)(6 22 19)(7 23 20)(8 24 17)
(1 21)(2 22)(3 23)(4 24)(5 9)(6 10)(7 11)(8 12)(13 18)(14 19)(15 20)(16 17)

G:=sub<Sym(24)| (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,20)(10,17)(11,18)(12,19), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,9,13)(2,10,14)(3,11,15)(4,12,16)(5,21,18)(6,22,19)(7,23,20)(8,24,17), (1,21)(2,22)(3,23)(4,24)(5,9)(6,10)(7,11)(8,12)(13,18)(14,19)(15,20)(16,17)>;

G:=Group( (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,20)(10,17)(11,18)(12,19), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,9,13)(2,10,14)(3,11,15)(4,12,16)(5,21,18)(6,22,19)(7,23,20)(8,24,17), (1,21)(2,22)(3,23)(4,24)(5,9)(6,10)(7,11)(8,12)(13,18)(14,19)(15,20)(16,17) );

G=PermutationGroup([[(1,23),(2,24),(3,21),(4,22),(5,15),(6,16),(7,13),(8,14),(9,20),(10,17),(11,18),(12,19)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,3),(2,4),(9,11),(10,12),(17,19),(18,20),(21,23),(22,24)], [(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,9,13),(2,10,14),(3,11,15),(4,12,16),(5,21,18),(6,22,19),(7,23,20),(8,24,17)], [(1,21),(2,22),(3,23),(4,24),(5,9),(6,10),(7,11),(8,12),(13,18),(14,19),(15,20),(16,17)]])

G:=TransitiveGroup(24,418);

40 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I···4T6A6B6C12A12B12C12D
order1222222222223444444444···466612121212
size1111333366668111133336···68888888

40 irreducible representations

dim11111122223333
type+++++++++++
imageC1C2C2C2C2C4S3D6D6C4×S3S4C2×S4C2×S4C4×S4
kernelC2×C4×S4C4×S4C2×A4⋊C4C2×C4×A4C22×S4C2×S4C23×C4C22×C4C24C23C2×C4C4C22C2
# reps14111812142428

Matrix representation of C2×C4×S4 in GL5(𝔽13)

120000
012000
00100
00010
00001
,
50000
05000
00800
00080
00008
,
10000
01000
001200
000120
001201
,
10000
01000
00100
001120
001012
,
012000
112000
001011
000012
000112
,
012000
120000
00100
00001
00010

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,0,0,0,0,0,5,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,12,0,0,0,12,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,12,0,0,0,0,0,12],[0,1,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,11,12,12],[0,12,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

C2×C4×S4 in GAP, Magma, Sage, TeX

C_2\times C_4\times S_4
% in TeX

G:=Group("C2xC4xS4");
// GroupNames label

G:=SmallGroup(192,1469);
// by ID

G=gap.SmallGroup(192,1469);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,58,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽