Copied to
clipboard

G = C3×C12⋊S3order 216 = 23·33

Direct product of C3 and C12⋊S3

direct product, metabelian, supersoluble, monomial

Aliases: C3×C12⋊S3, C3311D4, C327D12, C121(C3×S3), (C3×C12)⋊5C6, (C3×C12)⋊6S3, C31(C3×D12), C123(C3⋊S3), C6.26(S3×C6), (C3×C6).59D6, C328(C3×D4), (C32×C12)⋊3C2, (C32×C6).23C22, C4⋊(C3×C3⋊S3), (C6×C3⋊S3)⋊5C2, (C2×C3⋊S3)⋊5C6, C2.4(C6×C3⋊S3), C6.24(C2×C3⋊S3), (C3×C6).31(C2×C6), SmallGroup(216,142)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3×C12⋊S3
C1C3C32C3×C6C32×C6C6×C3⋊S3 — C3×C12⋊S3
C32C3×C6 — C3×C12⋊S3
C1C6C12

Generators and relations for C3×C12⋊S3
 G = < a,b,c,d | a3=b12=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 392 in 120 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, D12, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C32×C6, C3×D12, C12⋊S3, C32×C12, C6×C3⋊S3, C3×C12⋊S3
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, C3×S3, C3⋊S3, D12, C3×D4, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C3×D12, C12⋊S3, C6×C3⋊S3, C3×C12⋊S3

Smallest permutation representation of C3×C12⋊S3
On 72 points
Generators in S72
(1 50 67)(2 51 68)(3 52 69)(4 53 70)(5 54 71)(6 55 72)(7 56 61)(8 57 62)(9 58 63)(10 59 64)(11 60 65)(12 49 66)(13 29 48)(14 30 37)(15 31 38)(16 32 39)(17 33 40)(18 34 41)(19 35 42)(20 36 43)(21 25 44)(22 26 45)(23 27 46)(24 28 47)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 54 63)(2 55 64)(3 56 65)(4 57 66)(5 58 67)(6 59 68)(7 60 69)(8 49 70)(9 50 71)(10 51 72)(11 52 61)(12 53 62)(13 40 25)(14 41 26)(15 42 27)(16 43 28)(17 44 29)(18 45 30)(19 46 31)(20 47 32)(21 48 33)(22 37 34)(23 38 35)(24 39 36)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 48)(7 47)(8 46)(9 45)(10 44)(11 43)(12 42)(13 55)(14 54)(15 53)(16 52)(17 51)(18 50)(19 49)(20 60)(21 59)(22 58)(23 57)(24 56)(25 64)(26 63)(27 62)(28 61)(29 72)(30 71)(31 70)(32 69)(33 68)(34 67)(35 66)(36 65)

G:=sub<Sym(72)| (1,50,67)(2,51,68)(3,52,69)(4,53,70)(5,54,71)(6,55,72)(7,56,61)(8,57,62)(9,58,63)(10,59,64)(11,60,65)(12,49,66)(13,29,48)(14,30,37)(15,31,38)(16,32,39)(17,33,40)(18,34,41)(19,35,42)(20,36,43)(21,25,44)(22,26,45)(23,27,46)(24,28,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,54,63)(2,55,64)(3,56,65)(4,57,66)(5,58,67)(6,59,68)(7,60,69)(8,49,70)(9,50,71)(10,51,72)(11,52,61)(12,53,62)(13,40,25)(14,41,26)(15,42,27)(16,43,28)(17,44,29)(18,45,30)(19,46,31)(20,47,32)(21,48,33)(22,37,34)(23,38,35)(24,39,36), (1,41)(2,40)(3,39)(4,38)(5,37)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,55)(14,54)(15,53)(16,52)(17,51)(18,50)(19,49)(20,60)(21,59)(22,58)(23,57)(24,56)(25,64)(26,63)(27,62)(28,61)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)>;

G:=Group( (1,50,67)(2,51,68)(3,52,69)(4,53,70)(5,54,71)(6,55,72)(7,56,61)(8,57,62)(9,58,63)(10,59,64)(11,60,65)(12,49,66)(13,29,48)(14,30,37)(15,31,38)(16,32,39)(17,33,40)(18,34,41)(19,35,42)(20,36,43)(21,25,44)(22,26,45)(23,27,46)(24,28,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,54,63)(2,55,64)(3,56,65)(4,57,66)(5,58,67)(6,59,68)(7,60,69)(8,49,70)(9,50,71)(10,51,72)(11,52,61)(12,53,62)(13,40,25)(14,41,26)(15,42,27)(16,43,28)(17,44,29)(18,45,30)(19,46,31)(20,47,32)(21,48,33)(22,37,34)(23,38,35)(24,39,36), (1,41)(2,40)(3,39)(4,38)(5,37)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,55)(14,54)(15,53)(16,52)(17,51)(18,50)(19,49)(20,60)(21,59)(22,58)(23,57)(24,56)(25,64)(26,63)(27,62)(28,61)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65) );

G=PermutationGroup([[(1,50,67),(2,51,68),(3,52,69),(4,53,70),(5,54,71),(6,55,72),(7,56,61),(8,57,62),(9,58,63),(10,59,64),(11,60,65),(12,49,66),(13,29,48),(14,30,37),(15,31,38),(16,32,39),(17,33,40),(18,34,41),(19,35,42),(20,36,43),(21,25,44),(22,26,45),(23,27,46),(24,28,47)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,54,63),(2,55,64),(3,56,65),(4,57,66),(5,58,67),(6,59,68),(7,60,69),(8,49,70),(9,50,71),(10,51,72),(11,52,61),(12,53,62),(13,40,25),(14,41,26),(15,42,27),(16,43,28),(17,44,29),(18,45,30),(19,46,31),(20,47,32),(21,48,33),(22,37,34),(23,38,35),(24,39,36)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,48),(7,47),(8,46),(9,45),(10,44),(11,43),(12,42),(13,55),(14,54),(15,53),(16,52),(17,51),(18,50),(19,49),(20,60),(21,59),(22,58),(23,57),(24,56),(25,64),(26,63),(27,62),(28,61),(29,72),(30,71),(31,70),(32,69),(33,68),(34,67),(35,66),(36,65)]])

C3×C12⋊S3 is a maximal subgroup of
C336D8  C338D8  C3313SD16  C3316SD16  C339D8  C3318SD16  C3×S3×D12  C12.39S32  C12.57S32  C12⋊S32  C12⋊S312S3  C123S32  C3×D4×C3⋊S3

63 conjugacy classes

class 1 2A2B2C3A3B3C···3N 4 6A6B6C···6N6O6P6Q6R12A···12Z
order1222333···34666···6666612···12
size111818112···22112···2181818182···2

63 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C3C6C6S3D4D6C3×S3D12C3×D4S3×C6C3×D12
kernelC3×C12⋊S3C32×C12C6×C3⋊S3C12⋊S3C3×C12C2×C3⋊S3C3×C12C33C3×C6C12C32C32C6C3
# reps112224414882816

Matrix representation of C3×C12⋊S3 in GL4(𝔽13) generated by

1000
0100
0090
0009
,
101000
3700
0080
0005
,
12100
12000
0090
0003
,
101000
7300
0001
0010
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[10,3,0,0,10,7,0,0,0,0,8,0,0,0,0,5],[12,12,0,0,1,0,0,0,0,0,9,0,0,0,0,3],[10,7,0,0,10,3,0,0,0,0,0,1,0,0,1,0] >;

C3×C12⋊S3 in GAP, Magma, Sage, TeX

C_3\times C_{12}\rtimes S_3
% in TeX

G:=Group("C3xC12:S3");
// GroupNames label

G:=SmallGroup(216,142);
// by ID

G=gap.SmallGroup(216,142);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,79,1444,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽