extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3×S3) = C3×Dic18 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.1(C3xS3) | 216,43 |
C12.2(C3×S3) = C3×D36 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.2(C3xS3) | 216,46 |
C12.3(C3×S3) = He3⋊3Q8 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 6- | C12.3(C3xS3) | 216,49 |
C12.4(C3×S3) = He3⋊4D4 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 36 | 6+ | C12.4(C3xS3) | 216,51 |
C12.5(C3×S3) = C36.C6 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 6- | C12.5(C3xS3) | 216,52 |
C12.6(C3×S3) = D36⋊C3 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 36 | 6+ | C12.6(C3xS3) | 216,54 |
C12.7(C3×S3) = C3×C32⋊4Q8 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | | C12.7(C3xS3) | 216,140 |
C12.8(C3×S3) = C3×C9⋊C8 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.8(C3xS3) | 216,12 |
C12.9(C3×S3) = He3⋊3C8 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 6 | C12.9(C3xS3) | 216,14 |
C12.10(C3×S3) = C9⋊C24 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 6 | C12.10(C3xS3) | 216,15 |
C12.11(C3×S3) = C12×D9 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.11(C3xS3) | 216,45 |
C12.12(C3×S3) = C4×C32⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 36 | 6 | C12.12(C3xS3) | 216,50 |
C12.13(C3×S3) = C4×C9⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 36 | 6 | C12.13(C3xS3) | 216,53 |
C12.14(C3×S3) = C3×C32⋊4C8 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | | C12.14(C3xS3) | 216,83 |
C12.15(C3×S3) = C9×Dic6 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.15(C3xS3) | 216,44 |
C12.16(C3×S3) = C9×D12 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.16(C3xS3) | 216,48 |
C12.17(C3×S3) = C32×Dic6 | φ: C3×S3/C32 → C2 ⊆ Aut C12 | 72 | | C12.17(C3xS3) | 216,135 |
C12.18(C3×S3) = C9×C3⋊C8 | central extension (φ=1) | 72 | 2 | C12.18(C3xS3) | 216,13 |
C12.19(C3×S3) = S3×C36 | central extension (φ=1) | 72 | 2 | C12.19(C3xS3) | 216,47 |
C12.20(C3×S3) = C32×C3⋊C8 | central extension (φ=1) | 72 | | C12.20(C3xS3) | 216,82 |