Extensions 1→N→G→Q→1 with N=C12 and Q=C3×S3

Direct product G=N×Q with N=C12 and Q=C3×S3
dρLabelID
S3×C3×C1272S3xC3xC12216,136

Semidirect products G=N:Q with N=C12 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C121(C3×S3) = C3×C12⋊S3φ: C3×S3/C32C2 ⊆ Aut C1272C12:1(C3xS3)216,142
C122(C3×S3) = C12×C3⋊S3φ: C3×S3/C32C2 ⊆ Aut C1272C12:2(C3xS3)216,141
C123(C3×S3) = C32×D12φ: C3×S3/C32C2 ⊆ Aut C1272C12:3(C3xS3)216,137

Non-split extensions G=N.Q with N=C12 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C12.1(C3×S3) = C3×Dic18φ: C3×S3/C32C2 ⊆ Aut C12722C12.1(C3xS3)216,43
C12.2(C3×S3) = C3×D36φ: C3×S3/C32C2 ⊆ Aut C12722C12.2(C3xS3)216,46
C12.3(C3×S3) = He33Q8φ: C3×S3/C32C2 ⊆ Aut C12726-C12.3(C3xS3)216,49
C12.4(C3×S3) = He34D4φ: C3×S3/C32C2 ⊆ Aut C12366+C12.4(C3xS3)216,51
C12.5(C3×S3) = C36.C6φ: C3×S3/C32C2 ⊆ Aut C12726-C12.5(C3xS3)216,52
C12.6(C3×S3) = D36⋊C3φ: C3×S3/C32C2 ⊆ Aut C12366+C12.6(C3xS3)216,54
C12.7(C3×S3) = C3×C324Q8φ: C3×S3/C32C2 ⊆ Aut C1272C12.7(C3xS3)216,140
C12.8(C3×S3) = C3×C9⋊C8φ: C3×S3/C32C2 ⊆ Aut C12722C12.8(C3xS3)216,12
C12.9(C3×S3) = He33C8φ: C3×S3/C32C2 ⊆ Aut C12726C12.9(C3xS3)216,14
C12.10(C3×S3) = C9⋊C24φ: C3×S3/C32C2 ⊆ Aut C12726C12.10(C3xS3)216,15
C12.11(C3×S3) = C12×D9φ: C3×S3/C32C2 ⊆ Aut C12722C12.11(C3xS3)216,45
C12.12(C3×S3) = C4×C32⋊C6φ: C3×S3/C32C2 ⊆ Aut C12366C12.12(C3xS3)216,50
C12.13(C3×S3) = C4×C9⋊C6φ: C3×S3/C32C2 ⊆ Aut C12366C12.13(C3xS3)216,53
C12.14(C3×S3) = C3×C324C8φ: C3×S3/C32C2 ⊆ Aut C1272C12.14(C3xS3)216,83
C12.15(C3×S3) = C9×Dic6φ: C3×S3/C32C2 ⊆ Aut C12722C12.15(C3xS3)216,44
C12.16(C3×S3) = C9×D12φ: C3×S3/C32C2 ⊆ Aut C12722C12.16(C3xS3)216,48
C12.17(C3×S3) = C32×Dic6φ: C3×S3/C32C2 ⊆ Aut C1272C12.17(C3xS3)216,135
C12.18(C3×S3) = C9×C3⋊C8central extension (φ=1)722C12.18(C3xS3)216,13
C12.19(C3×S3) = S3×C36central extension (φ=1)722C12.19(C3xS3)216,47
C12.20(C3×S3) = C32×C3⋊C8central extension (φ=1)72C12.20(C3xS3)216,82

׿
×
𝔽