Copied to
clipboard

G = C28.10D4order 224 = 25·7

10th non-split extension by C28 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.10D4, (C2×C4).Dic7, (C2×C28).1C4, (C2×C4).4D14, (C2×Q8).2D7, (Q8×C14).2C2, C4.15(C7⋊D4), C72(C4.10D4), C4.Dic7.4C2, (C2×C28).19C22, C2.7(C23.D7), C22.4(C2×Dic7), C14.17(C22⋊C4), (C2×C14).30(C2×C4), SmallGroup(224,42)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C28.10D4
C1C7C14C28C2×C28C4.Dic7 — C28.10D4
C7C14C2×C14 — C28.10D4
C1C2C2×C4C2×Q8

Generators and relations for C28.10D4
 G = < a,b,c | a28=1, b4=a14, c2=a21, bab-1=a-1, cac-1=a13, cbc-1=a21b3 >

2C2
2C4
2C4
2C14
2Q8
2Q8
14C8
14C8
2C28
2C28
7M4(2)
7M4(2)
2C7⋊C8
2C7×Q8
2C7×Q8
2C7⋊C8
7C4.10D4

Smallest permutation representation of C28.10D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 88 8 109 15 102 22 95)(2 87 9 108 16 101 23 94)(3 86 10 107 17 100 24 93)(4 85 11 106 18 99 25 92)(5 112 12 105 19 98 26 91)(6 111 13 104 20 97 27 90)(7 110 14 103 21 96 28 89)(29 69 36 62 43 83 50 76)(30 68 37 61 44 82 51 75)(31 67 38 60 45 81 52 74)(32 66 39 59 46 80 53 73)(33 65 40 58 47 79 54 72)(34 64 41 57 48 78 55 71)(35 63 42 84 49 77 56 70)
(1 65 22 58 15 79 8 72)(2 78 23 71 16 64 9 57)(3 63 24 84 17 77 10 70)(4 76 25 69 18 62 11 83)(5 61 26 82 19 75 12 68)(6 74 27 67 20 60 13 81)(7 59 28 80 21 73 14 66)(29 106 50 99 43 92 36 85)(30 91 51 112 44 105 37 98)(31 104 52 97 45 90 38 111)(32 89 53 110 46 103 39 96)(33 102 54 95 47 88 40 109)(34 87 55 108 48 101 41 94)(35 100 56 93 49 86 42 107)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,88,8,109,15,102,22,95)(2,87,9,108,16,101,23,94)(3,86,10,107,17,100,24,93)(4,85,11,106,18,99,25,92)(5,112,12,105,19,98,26,91)(6,111,13,104,20,97,27,90)(7,110,14,103,21,96,28,89)(29,69,36,62,43,83,50,76)(30,68,37,61,44,82,51,75)(31,67,38,60,45,81,52,74)(32,66,39,59,46,80,53,73)(33,65,40,58,47,79,54,72)(34,64,41,57,48,78,55,71)(35,63,42,84,49,77,56,70), (1,65,22,58,15,79,8,72)(2,78,23,71,16,64,9,57)(3,63,24,84,17,77,10,70)(4,76,25,69,18,62,11,83)(5,61,26,82,19,75,12,68)(6,74,27,67,20,60,13,81)(7,59,28,80,21,73,14,66)(29,106,50,99,43,92,36,85)(30,91,51,112,44,105,37,98)(31,104,52,97,45,90,38,111)(32,89,53,110,46,103,39,96)(33,102,54,95,47,88,40,109)(34,87,55,108,48,101,41,94)(35,100,56,93,49,86,42,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,88,8,109,15,102,22,95)(2,87,9,108,16,101,23,94)(3,86,10,107,17,100,24,93)(4,85,11,106,18,99,25,92)(5,112,12,105,19,98,26,91)(6,111,13,104,20,97,27,90)(7,110,14,103,21,96,28,89)(29,69,36,62,43,83,50,76)(30,68,37,61,44,82,51,75)(31,67,38,60,45,81,52,74)(32,66,39,59,46,80,53,73)(33,65,40,58,47,79,54,72)(34,64,41,57,48,78,55,71)(35,63,42,84,49,77,56,70), (1,65,22,58,15,79,8,72)(2,78,23,71,16,64,9,57)(3,63,24,84,17,77,10,70)(4,76,25,69,18,62,11,83)(5,61,26,82,19,75,12,68)(6,74,27,67,20,60,13,81)(7,59,28,80,21,73,14,66)(29,106,50,99,43,92,36,85)(30,91,51,112,44,105,37,98)(31,104,52,97,45,90,38,111)(32,89,53,110,46,103,39,96)(33,102,54,95,47,88,40,109)(34,87,55,108,48,101,41,94)(35,100,56,93,49,86,42,107) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,88,8,109,15,102,22,95),(2,87,9,108,16,101,23,94),(3,86,10,107,17,100,24,93),(4,85,11,106,18,99,25,92),(5,112,12,105,19,98,26,91),(6,111,13,104,20,97,27,90),(7,110,14,103,21,96,28,89),(29,69,36,62,43,83,50,76),(30,68,37,61,44,82,51,75),(31,67,38,60,45,81,52,74),(32,66,39,59,46,80,53,73),(33,65,40,58,47,79,54,72),(34,64,41,57,48,78,55,71),(35,63,42,84,49,77,56,70)], [(1,65,22,58,15,79,8,72),(2,78,23,71,16,64,9,57),(3,63,24,84,17,77,10,70),(4,76,25,69,18,62,11,83),(5,61,26,82,19,75,12,68),(6,74,27,67,20,60,13,81),(7,59,28,80,21,73,14,66),(29,106,50,99,43,92,36,85),(30,91,51,112,44,105,37,98),(31,104,52,97,45,90,38,111),(32,89,53,110,46,103,39,96),(33,102,54,95,47,88,40,109),(34,87,55,108,48,101,41,94),(35,100,56,93,49,86,42,107)]])

C28.10D4 is a maximal subgroup of
(C2×C4).D28  (C2×Q8).D14  C42.Dic7  C42.3Dic7  D7×C4.10D4  M4(2).21D14  D28.14D4  D28.15D4  C56.44D4  C56.29D4  M4(2).15D14  M4(2).16D14  (D4×C14).16C4  2- 1+4⋊D7  2- 1+4.D7
C28.10D4 is a maximal quotient of
(C2×C28)⋊C8  C28.(C4⋊C4)  C42.8D14  C28.10D8

41 conjugacy classes

class 1 2A2B4A4B4C4D7A7B7C8A8B8C8D14A···14I28A···28R
order1224444777888814···1428···28
size1122244222282828282···24···4

41 irreducible representations

dim11112222244
type+++++-+-
imageC1C2C2C4D4D7Dic7D14C7⋊D4C4.10D4C28.10D4
kernelC28.10D4C4.Dic7Q8×C14C2×C28C28C2×Q8C2×C4C2×C4C4C7C1
# reps121423631216

Matrix representation of C28.10D4 in GL4(𝔽113) generated by

168100
169700
705010681
2201097
,
8507710
3709663
64902855
55300
,
130490
0001
45531000
111200
G:=sub<GL(4,GF(113))| [16,16,70,22,81,97,50,0,0,0,106,109,0,0,81,7],[85,37,64,5,0,0,90,53,77,96,28,0,10,63,55,0],[13,0,45,1,0,0,53,112,49,0,100,0,0,1,0,0] >;

C28.10D4 in GAP, Magma, Sage, TeX

C_{28}._{10}D_4
% in TeX

G:=Group("C28.10D4");
// GroupNames label

G:=SmallGroup(224,42);
// by ID

G=gap.SmallGroup(224,42);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,103,188,86,579,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=1,b^4=a^14,c^2=a^21,b*a*b^-1=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^21*b^3>;
// generators/relations

Export

Subgroup lattice of C28.10D4 in TeX

׿
×
𝔽