Copied to
clipboard

G = C28.23D4order 224 = 25·7

23rd non-split extension by C28 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.23D4, (C2×Q8)⋊4D7, (Q8×C14)⋊4C2, D14⋊C416C2, (C4×Dic7)⋊7C2, (C2×D28).9C2, C14.58(C2×D4), (C2×C4).57D14, C74(C4.4D4), C4.11(C7⋊D4), C14.37(C4○D4), (C2×C14).59C23, (C2×C28).40C22, C2.9(Q82D7), C22.65(C22×D7), (C2×Dic7).41C22, (C22×D7).13C22, C2.22(C2×C7⋊D4), SmallGroup(224,142)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C28.23D4
C1C7C14C2×C14C22×D7C2×D28 — C28.23D4
C7C2×C14 — C28.23D4
C1C22C2×Q8

Generators and relations for C28.23D4
 G = < a,b,c | a28=b4=c2=1, bab-1=a13, cac=a-1, cbc=a14b-1 >

Subgroups: 350 in 76 conjugacy classes, 33 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C42, C22⋊C4, C2×D4, C2×Q8, Dic7, C28, C28, D14, C2×C14, C4.4D4, D28, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×D7, C4×Dic7, D14⋊C4, C2×D28, Q8×C14, C28.23D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4.4D4, C7⋊D4, C22×D7, Q82D7, C2×C7⋊D4, C28.23D4

Smallest permutation representation of C28.23D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 73 42 91)(2 58 43 104)(3 71 44 89)(4 84 45 102)(5 69 46 87)(6 82 47 100)(7 67 48 85)(8 80 49 98)(9 65 50 111)(10 78 51 96)(11 63 52 109)(12 76 53 94)(13 61 54 107)(14 74 55 92)(15 59 56 105)(16 72 29 90)(17 57 30 103)(18 70 31 88)(19 83 32 101)(20 68 33 86)(21 81 34 99)(22 66 35 112)(23 79 36 97)(24 64 37 110)(25 77 38 95)(26 62 39 108)(27 75 40 93)(28 60 41 106)
(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(29 55)(30 54)(31 53)(32 52)(33 51)(34 50)(35 49)(36 48)(37 47)(38 46)(39 45)(40 44)(41 43)(57 93)(58 92)(59 91)(60 90)(61 89)(62 88)(63 87)(64 86)(65 85)(66 112)(67 111)(68 110)(69 109)(70 108)(71 107)(72 106)(73 105)(74 104)(75 103)(76 102)(77 101)(78 100)(79 99)(80 98)(81 97)(82 96)(83 95)(84 94)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,73,42,91)(2,58,43,104)(3,71,44,89)(4,84,45,102)(5,69,46,87)(6,82,47,100)(7,67,48,85)(8,80,49,98)(9,65,50,111)(10,78,51,96)(11,63,52,109)(12,76,53,94)(13,61,54,107)(14,74,55,92)(15,59,56,105)(16,72,29,90)(17,57,30,103)(18,70,31,88)(19,83,32,101)(20,68,33,86)(21,81,34,99)(22,66,35,112)(23,79,36,97)(24,64,37,110)(25,77,38,95)(26,62,39,108)(27,75,40,93)(28,60,41,106), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,55)(30,54)(31,53)(32,52)(33,51)(34,50)(35,49)(36,48)(37,47)(38,46)(39,45)(40,44)(41,43)(57,93)(58,92)(59,91)(60,90)(61,89)(62,88)(63,87)(64,86)(65,85)(66,112)(67,111)(68,110)(69,109)(70,108)(71,107)(72,106)(73,105)(74,104)(75,103)(76,102)(77,101)(78,100)(79,99)(80,98)(81,97)(82,96)(83,95)(84,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,73,42,91)(2,58,43,104)(3,71,44,89)(4,84,45,102)(5,69,46,87)(6,82,47,100)(7,67,48,85)(8,80,49,98)(9,65,50,111)(10,78,51,96)(11,63,52,109)(12,76,53,94)(13,61,54,107)(14,74,55,92)(15,59,56,105)(16,72,29,90)(17,57,30,103)(18,70,31,88)(19,83,32,101)(20,68,33,86)(21,81,34,99)(22,66,35,112)(23,79,36,97)(24,64,37,110)(25,77,38,95)(26,62,39,108)(27,75,40,93)(28,60,41,106), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,55)(30,54)(31,53)(32,52)(33,51)(34,50)(35,49)(36,48)(37,47)(38,46)(39,45)(40,44)(41,43)(57,93)(58,92)(59,91)(60,90)(61,89)(62,88)(63,87)(64,86)(65,85)(66,112)(67,111)(68,110)(69,109)(70,108)(71,107)(72,106)(73,105)(74,104)(75,103)(76,102)(77,101)(78,100)(79,99)(80,98)(81,97)(82,96)(83,95)(84,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,73,42,91),(2,58,43,104),(3,71,44,89),(4,84,45,102),(5,69,46,87),(6,82,47,100),(7,67,48,85),(8,80,49,98),(9,65,50,111),(10,78,51,96),(11,63,52,109),(12,76,53,94),(13,61,54,107),(14,74,55,92),(15,59,56,105),(16,72,29,90),(17,57,30,103),(18,70,31,88),(19,83,32,101),(20,68,33,86),(21,81,34,99),(22,66,35,112),(23,79,36,97),(24,64,37,110),(25,77,38,95),(26,62,39,108),(27,75,40,93),(28,60,41,106)], [(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(29,55),(30,54),(31,53),(32,52),(33,51),(34,50),(35,49),(36,48),(37,47),(38,46),(39,45),(40,44),(41,43),(57,93),(58,92),(59,91),(60,90),(61,89),(62,88),(63,87),(64,86),(65,85),(66,112),(67,111),(68,110),(69,109),(70,108),(71,107),(72,106),(73,105),(74,104),(75,103),(76,102),(77,101),(78,100),(79,99),(80,98),(81,97),(82,96),(83,95),(84,94)]])

C28.23D4 is a maximal subgroup of
(C2×C4).D28  D28.5D4  Q8⋊C4⋊D7  Dic14.11D4  Q8⋊Dic7⋊C2  D28.12D4  (C7×D4).D4  C56.43D4  C569D4  (C2×Q16)⋊D7  C56.37D4  C56.28D4  D28.39D4  2- 1+4⋊D7  C42.122D14  C42.131D14  C42.133D14  C42.136D14  C22⋊Q825D7  D2821D4  Dic1422D4  C14.532+ 1+4  C14.222- 1+4  C14.242- 1+4  C14.562+ 1+4  C14.262- 1+4  C42.138D14  D7×C4.4D4  C4218D14  C4220D14  C42.143D14  C4222D14  C42.171D14  C42.240D14  C42.177D14  C42.178D14  C42.179D14  C42.180D14  C14.442- 1+4  C14.452- 1+4  C14.1452+ 1+4  C14.1462+ 1+4  (C2×C28)⋊17D4
C28.23D4 is a maximal quotient of
(C4×Dic7)⋊9C4  (C2×C28).55D4  (C2×D28)⋊10C4  D14⋊C47C4  (C2×C4)⋊3D28  (C2×C28).290D4  C42.70D14  C42.216D14  C42.71D14  C28.D8  C42.82D14  C28.11Q16  (Q8×C14)⋊7C4  (C22×Q8)⋊D7

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H7A7B7C14A···14I28A···28R
order1222224444444477714···1428···28
size111128282244141414142222···24···4

44 irreducible representations

dim11111222224
type+++++++++
imageC1C2C2C2C2D4D7C4○D4D14C7⋊D4Q82D7
kernelC28.23D4C4×Dic7D14⋊C4C2×D28Q8×C14C28C2×Q8C14C2×C4C4C2
# reps114112349126

Matrix representation of C28.23D4 in GL6(𝔽29)

100000
010000
00222600
0010000
00001212
0000017
,
6190000
24230000
000300
0010000
000011
0000028
,
100000
7280000
0002600
0019000
000010
00002728

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,10,0,0,0,0,26,0,0,0,0,0,0,0,12,0,0,0,0,0,12,17],[6,24,0,0,0,0,19,23,0,0,0,0,0,0,0,10,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,1,28],[1,7,0,0,0,0,0,28,0,0,0,0,0,0,0,19,0,0,0,0,26,0,0,0,0,0,0,0,1,27,0,0,0,0,0,28] >;

C28.23D4 in GAP, Magma, Sage, TeX

C_{28}._{23}D_4
% in TeX

G:=Group("C28.23D4");
// GroupNames label

G:=SmallGroup(224,142);
// by ID

G=gap.SmallGroup(224,142);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,103,218,188,86,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=c^2=1,b*a*b^-1=a^13,c*a*c=a^-1,c*b*c=a^14*b^-1>;
// generators/relations

׿
×
𝔽