metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D14⋊3Q8, C28.22D4, (C2×Q8)⋊3D7, C2.9(Q8×D7), (Q8×C14)⋊3C2, C7⋊5(C22⋊Q8), D14⋊C4.6C2, C4⋊Dic7⋊15C2, C14.57(C2×D4), (C2×C4).21D14, C14.17(C2×Q8), Dic7⋊C4⋊16C2, C4.18(C7⋊D4), C14.36(C4○D4), (C2×C28).64C22, (C2×C14).58C23, C2.8(Q8⋊2D7), C22.64(C22×D7), (C2×Dic7).21C22, (C22×D7).27C22, (C2×C4×D7).5C2, C2.21(C2×C7⋊D4), SmallGroup(224,141)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D14⋊3Q8
 G = < a,b,c,d | a14=b2=c4=1, d2=c2, bab=a-1, ac=ca, ad=da, cbc-1=a7b, bd=db, dcd-1=c-1 >
Subgroups: 286 in 74 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, Q8, C23, D7, C14, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic7, C28, C28, D14, D14, C2×C14, C22⋊Q8, C4×D7, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×D7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C2×C4×D7, Q8×C14, D14⋊3Q8
Quotients: C1, C2, C22, D4, Q8, C23, D7, C2×D4, C2×Q8, C4○D4, D14, C22⋊Q8, C7⋊D4, C22×D7, Q8×D7, Q8⋊2D7, C2×C7⋊D4, D14⋊3Q8
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 89)(2 88)(3 87)(4 86)(5 85)(6 98)(7 97)(8 96)(9 95)(10 94)(11 93)(12 92)(13 91)(14 90)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 56)(23 55)(24 54)(25 53)(26 52)(27 51)(28 50)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(57 79)(58 78)(59 77)(60 76)(61 75)(62 74)(63 73)(64 72)(65 71)(66 84)(67 83)(68 82)(69 81)(70 80)
(1 53 90 19)(2 54 91 20)(3 55 92 21)(4 56 93 22)(5 43 94 23)(6 44 95 24)(7 45 96 25)(8 46 97 26)(9 47 98 27)(10 48 85 28)(11 49 86 15)(12 50 87 16)(13 51 88 17)(14 52 89 18)(29 67 103 74)(30 68 104 75)(31 69 105 76)(32 70 106 77)(33 57 107 78)(34 58 108 79)(35 59 109 80)(36 60 110 81)(37 61 111 82)(38 62 112 83)(39 63 99 84)(40 64 100 71)(41 65 101 72)(42 66 102 73)
(1 58 90 79)(2 59 91 80)(3 60 92 81)(4 61 93 82)(5 62 94 83)(6 63 95 84)(7 64 96 71)(8 65 97 72)(9 66 98 73)(10 67 85 74)(11 68 86 75)(12 69 87 76)(13 70 88 77)(14 57 89 78)(15 104 49 30)(16 105 50 31)(17 106 51 32)(18 107 52 33)(19 108 53 34)(20 109 54 35)(21 110 55 36)(22 111 56 37)(23 112 43 38)(24 99 44 39)(25 100 45 40)(26 101 46 41)(27 102 47 42)(28 103 48 29)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,89)(2,88)(3,87)(4,86)(5,85)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,84)(67,83)(68,82)(69,81)(70,80), (1,53,90,19)(2,54,91,20)(3,55,92,21)(4,56,93,22)(5,43,94,23)(6,44,95,24)(7,45,96,25)(8,46,97,26)(9,47,98,27)(10,48,85,28)(11,49,86,15)(12,50,87,16)(13,51,88,17)(14,52,89,18)(29,67,103,74)(30,68,104,75)(31,69,105,76)(32,70,106,77)(33,57,107,78)(34,58,108,79)(35,59,109,80)(36,60,110,81)(37,61,111,82)(38,62,112,83)(39,63,99,84)(40,64,100,71)(41,65,101,72)(42,66,102,73), (1,58,90,79)(2,59,91,80)(3,60,92,81)(4,61,93,82)(5,62,94,83)(6,63,95,84)(7,64,96,71)(8,65,97,72)(9,66,98,73)(10,67,85,74)(11,68,86,75)(12,69,87,76)(13,70,88,77)(14,57,89,78)(15,104,49,30)(16,105,50,31)(17,106,51,32)(18,107,52,33)(19,108,53,34)(20,109,54,35)(21,110,55,36)(22,111,56,37)(23,112,43,38)(24,99,44,39)(25,100,45,40)(26,101,46,41)(27,102,47,42)(28,103,48,29)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,89)(2,88)(3,87)(4,86)(5,85)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,84)(67,83)(68,82)(69,81)(70,80), (1,53,90,19)(2,54,91,20)(3,55,92,21)(4,56,93,22)(5,43,94,23)(6,44,95,24)(7,45,96,25)(8,46,97,26)(9,47,98,27)(10,48,85,28)(11,49,86,15)(12,50,87,16)(13,51,88,17)(14,52,89,18)(29,67,103,74)(30,68,104,75)(31,69,105,76)(32,70,106,77)(33,57,107,78)(34,58,108,79)(35,59,109,80)(36,60,110,81)(37,61,111,82)(38,62,112,83)(39,63,99,84)(40,64,100,71)(41,65,101,72)(42,66,102,73), (1,58,90,79)(2,59,91,80)(3,60,92,81)(4,61,93,82)(5,62,94,83)(6,63,95,84)(7,64,96,71)(8,65,97,72)(9,66,98,73)(10,67,85,74)(11,68,86,75)(12,69,87,76)(13,70,88,77)(14,57,89,78)(15,104,49,30)(16,105,50,31)(17,106,51,32)(18,107,52,33)(19,108,53,34)(20,109,54,35)(21,110,55,36)(22,111,56,37)(23,112,43,38)(24,99,44,39)(25,100,45,40)(26,101,46,41)(27,102,47,42)(28,103,48,29) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,89),(2,88),(3,87),(4,86),(5,85),(6,98),(7,97),(8,96),(9,95),(10,94),(11,93),(12,92),(13,91),(14,90),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,56),(23,55),(24,54),(25,53),(26,52),(27,51),(28,50),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(57,79),(58,78),(59,77),(60,76),(61,75),(62,74),(63,73),(64,72),(65,71),(66,84),(67,83),(68,82),(69,81),(70,80)], [(1,53,90,19),(2,54,91,20),(3,55,92,21),(4,56,93,22),(5,43,94,23),(6,44,95,24),(7,45,96,25),(8,46,97,26),(9,47,98,27),(10,48,85,28),(11,49,86,15),(12,50,87,16),(13,51,88,17),(14,52,89,18),(29,67,103,74),(30,68,104,75),(31,69,105,76),(32,70,106,77),(33,57,107,78),(34,58,108,79),(35,59,109,80),(36,60,110,81),(37,61,111,82),(38,62,112,83),(39,63,99,84),(40,64,100,71),(41,65,101,72),(42,66,102,73)], [(1,58,90,79),(2,59,91,80),(3,60,92,81),(4,61,93,82),(5,62,94,83),(6,63,95,84),(7,64,96,71),(8,65,97,72),(9,66,98,73),(10,67,85,74),(11,68,86,75),(12,69,87,76),(13,70,88,77),(14,57,89,78),(15,104,49,30),(16,105,50,31),(17,106,51,32),(18,107,52,33),(19,108,53,34),(20,109,54,35),(21,110,55,36),(22,111,56,37),(23,112,43,38),(24,99,44,39),(25,100,45,40),(26,101,46,41),(27,102,47,42),(28,103,48,29)]])
D14⋊3Q8 is a maximal subgroup of
 D14.1SD16  D14⋊2SD16  D14.Q16  C7⋊(C8⋊D4)  D14⋊Q16  D14⋊C8.C2  (C2×C8).D14  C7⋊C8.D4  D14⋊6SD16  C56⋊14D4  Dic14.16D4  C56⋊8D4  D14⋊5Q16  D28.17D4  D14⋊3Q16  C56.36D4  C42.232D14  D28⋊10Q8  C42.131D14  C42.132D14  C42.133D14  C42.134D14  C42.135D14  D7×C22⋊Q8  C4⋊C4⋊26D14  C14.162- 1+4  C14.172- 1+4  C14.512+ 1+4  C14.1182+ 1+4  C14.522+ 1+4  C14.532+ 1+4  C14.202- 1+4  C14.212- 1+4  C14.232- 1+4  C14.772- 1+4  C14.572+ 1+4  C14.582+ 1+4  C14.262- 1+4  C42.137D14  D28⋊10D4  Dic14⋊10D4  C42⋊20D14  C42⋊21D14  C42.234D14  C42.144D14  C42.145D14  D28⋊12D4  D28⋊8Q8  C42.241D14  C42.174D14  D28⋊9Q8  C42.176D14  C42.178D14  C42.180D14  Q8×C7⋊D4  C14.442- 1+4  C14.452- 1+4  C14.1042- 1+4  (C2×C28)⋊15D4  C14.1452+ 1+4  C14.1082- 1+4
D14⋊3Q8 is a maximal quotient of 
 C28⋊(C4⋊C4)  C22.23(Q8×D7)  (C2×C28).288D4  (C2×C28).54D4  C4⋊(D14⋊C4)  D14⋊C4⋊6C4  (C2×C28).289D4  (C2×C4).45D28  Dic14.4Q8  D28.4Q8  D28⋊5Q8  D28⋊6Q8  Dic14⋊5Q8  Dic14⋊6Q8  C14.C22≀C2  (Q8×C14)⋊7C4  (C22×Q8)⋊D7
44 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 7A | 7B | 7C | 14A | ··· | 14I | 28A | ··· | 28R | 
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 | 
| size | 1 | 1 | 1 | 1 | 14 | 14 | 2 | 2 | 4 | 4 | 14 | 14 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 
44 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 
| type | + | + | + | + | + | + | + | - | + | + | - | + | ||
| image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | D7 | C4○D4 | D14 | C7⋊D4 | Q8×D7 | Q8⋊2D7 | 
| kernel | D14⋊3Q8 | Dic7⋊C4 | C4⋊Dic7 | D14⋊C4 | C2×C4×D7 | Q8×C14 | C28 | D14 | C2×Q8 | C14 | C2×C4 | C4 | C2 | C2 | 
| # reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 9 | 12 | 3 | 3 | 
Matrix representation of D14⋊3Q8 ►in GL4(𝔽29) generated by
| 28 | 0 | 0 | 0 | 
| 0 | 28 | 0 | 0 | 
| 0 | 0 | 4 | 4 | 
| 0 | 0 | 25 | 18 | 
| 1 | 0 | 0 | 0 | 
| 16 | 28 | 0 | 0 | 
| 0 | 0 | 4 | 4 | 
| 0 | 0 | 18 | 25 | 
| 27 | 22 | 0 | 0 | 
| 9 | 2 | 0 | 0 | 
| 0 | 0 | 11 | 2 | 
| 0 | 0 | 27 | 18 | 
| 17 | 0 | 0 | 0 | 
| 11 | 12 | 0 | 0 | 
| 0 | 0 | 1 | 0 | 
| 0 | 0 | 0 | 1 | 
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,4,25,0,0,4,18],[1,16,0,0,0,28,0,0,0,0,4,18,0,0,4,25],[27,9,0,0,22,2,0,0,0,0,11,27,0,0,2,18],[17,11,0,0,0,12,0,0,0,0,1,0,0,0,0,1] >;
D14⋊3Q8 in GAP, Magma, Sage, TeX
D_{14}\rtimes_3Q_8 % in TeX
G:=Group("D14:3Q8"); // GroupNames label
G:=SmallGroup(224,141);
// by ID
G=gap.SmallGroup(224,141);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,218,188,86,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^14=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations