Copied to
clipboard

G = D143Q8order 224 = 25·7

3rd semidirect product of D14 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D143Q8, C28.22D4, (C2×Q8)⋊3D7, C2.9(Q8×D7), (Q8×C14)⋊3C2, C75(C22⋊Q8), D14⋊C4.6C2, C4⋊Dic715C2, C14.57(C2×D4), (C2×C4).21D14, C14.17(C2×Q8), Dic7⋊C416C2, C4.18(C7⋊D4), C14.36(C4○D4), (C2×C28).64C22, (C2×C14).58C23, C2.8(Q82D7), C22.64(C22×D7), (C2×Dic7).21C22, (C22×D7).27C22, (C2×C4×D7).5C2, C2.21(C2×C7⋊D4), SmallGroup(224,141)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D143Q8
C1C7C14C2×C14C22×D7C2×C4×D7 — D143Q8
C7C2×C14 — D143Q8
C1C22C2×Q8

Generators and relations for D143Q8
 G = < a,b,c,d | a14=b2=c4=1, d2=c2, bab=a-1, ac=ca, ad=da, cbc-1=a7b, bd=db, dcd-1=c-1 >

Subgroups: 286 in 74 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, Q8, C23, D7, C14, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic7, C28, C28, D14, D14, C2×C14, C22⋊Q8, C4×D7, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×D7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C2×C4×D7, Q8×C14, D143Q8
Quotients: C1, C2, C22, D4, Q8, C23, D7, C2×D4, C2×Q8, C4○D4, D14, C22⋊Q8, C7⋊D4, C22×D7, Q8×D7, Q82D7, C2×C7⋊D4, D143Q8

Smallest permutation representation of D143Q8
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 89)(2 88)(3 87)(4 86)(5 85)(6 98)(7 97)(8 96)(9 95)(10 94)(11 93)(12 92)(13 91)(14 90)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 56)(23 55)(24 54)(25 53)(26 52)(27 51)(28 50)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(57 79)(58 78)(59 77)(60 76)(61 75)(62 74)(63 73)(64 72)(65 71)(66 84)(67 83)(68 82)(69 81)(70 80)
(1 53 90 19)(2 54 91 20)(3 55 92 21)(4 56 93 22)(5 43 94 23)(6 44 95 24)(7 45 96 25)(8 46 97 26)(9 47 98 27)(10 48 85 28)(11 49 86 15)(12 50 87 16)(13 51 88 17)(14 52 89 18)(29 67 103 74)(30 68 104 75)(31 69 105 76)(32 70 106 77)(33 57 107 78)(34 58 108 79)(35 59 109 80)(36 60 110 81)(37 61 111 82)(38 62 112 83)(39 63 99 84)(40 64 100 71)(41 65 101 72)(42 66 102 73)
(1 58 90 79)(2 59 91 80)(3 60 92 81)(4 61 93 82)(5 62 94 83)(6 63 95 84)(7 64 96 71)(8 65 97 72)(9 66 98 73)(10 67 85 74)(11 68 86 75)(12 69 87 76)(13 70 88 77)(14 57 89 78)(15 104 49 30)(16 105 50 31)(17 106 51 32)(18 107 52 33)(19 108 53 34)(20 109 54 35)(21 110 55 36)(22 111 56 37)(23 112 43 38)(24 99 44 39)(25 100 45 40)(26 101 46 41)(27 102 47 42)(28 103 48 29)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,89)(2,88)(3,87)(4,86)(5,85)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,84)(67,83)(68,82)(69,81)(70,80), (1,53,90,19)(2,54,91,20)(3,55,92,21)(4,56,93,22)(5,43,94,23)(6,44,95,24)(7,45,96,25)(8,46,97,26)(9,47,98,27)(10,48,85,28)(11,49,86,15)(12,50,87,16)(13,51,88,17)(14,52,89,18)(29,67,103,74)(30,68,104,75)(31,69,105,76)(32,70,106,77)(33,57,107,78)(34,58,108,79)(35,59,109,80)(36,60,110,81)(37,61,111,82)(38,62,112,83)(39,63,99,84)(40,64,100,71)(41,65,101,72)(42,66,102,73), (1,58,90,79)(2,59,91,80)(3,60,92,81)(4,61,93,82)(5,62,94,83)(6,63,95,84)(7,64,96,71)(8,65,97,72)(9,66,98,73)(10,67,85,74)(11,68,86,75)(12,69,87,76)(13,70,88,77)(14,57,89,78)(15,104,49,30)(16,105,50,31)(17,106,51,32)(18,107,52,33)(19,108,53,34)(20,109,54,35)(21,110,55,36)(22,111,56,37)(23,112,43,38)(24,99,44,39)(25,100,45,40)(26,101,46,41)(27,102,47,42)(28,103,48,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,89)(2,88)(3,87)(4,86)(5,85)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,84)(67,83)(68,82)(69,81)(70,80), (1,53,90,19)(2,54,91,20)(3,55,92,21)(4,56,93,22)(5,43,94,23)(6,44,95,24)(7,45,96,25)(8,46,97,26)(9,47,98,27)(10,48,85,28)(11,49,86,15)(12,50,87,16)(13,51,88,17)(14,52,89,18)(29,67,103,74)(30,68,104,75)(31,69,105,76)(32,70,106,77)(33,57,107,78)(34,58,108,79)(35,59,109,80)(36,60,110,81)(37,61,111,82)(38,62,112,83)(39,63,99,84)(40,64,100,71)(41,65,101,72)(42,66,102,73), (1,58,90,79)(2,59,91,80)(3,60,92,81)(4,61,93,82)(5,62,94,83)(6,63,95,84)(7,64,96,71)(8,65,97,72)(9,66,98,73)(10,67,85,74)(11,68,86,75)(12,69,87,76)(13,70,88,77)(14,57,89,78)(15,104,49,30)(16,105,50,31)(17,106,51,32)(18,107,52,33)(19,108,53,34)(20,109,54,35)(21,110,55,36)(22,111,56,37)(23,112,43,38)(24,99,44,39)(25,100,45,40)(26,101,46,41)(27,102,47,42)(28,103,48,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,89),(2,88),(3,87),(4,86),(5,85),(6,98),(7,97),(8,96),(9,95),(10,94),(11,93),(12,92),(13,91),(14,90),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,56),(23,55),(24,54),(25,53),(26,52),(27,51),(28,50),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(57,79),(58,78),(59,77),(60,76),(61,75),(62,74),(63,73),(64,72),(65,71),(66,84),(67,83),(68,82),(69,81),(70,80)], [(1,53,90,19),(2,54,91,20),(3,55,92,21),(4,56,93,22),(5,43,94,23),(6,44,95,24),(7,45,96,25),(8,46,97,26),(9,47,98,27),(10,48,85,28),(11,49,86,15),(12,50,87,16),(13,51,88,17),(14,52,89,18),(29,67,103,74),(30,68,104,75),(31,69,105,76),(32,70,106,77),(33,57,107,78),(34,58,108,79),(35,59,109,80),(36,60,110,81),(37,61,111,82),(38,62,112,83),(39,63,99,84),(40,64,100,71),(41,65,101,72),(42,66,102,73)], [(1,58,90,79),(2,59,91,80),(3,60,92,81),(4,61,93,82),(5,62,94,83),(6,63,95,84),(7,64,96,71),(8,65,97,72),(9,66,98,73),(10,67,85,74),(11,68,86,75),(12,69,87,76),(13,70,88,77),(14,57,89,78),(15,104,49,30),(16,105,50,31),(17,106,51,32),(18,107,52,33),(19,108,53,34),(20,109,54,35),(21,110,55,36),(22,111,56,37),(23,112,43,38),(24,99,44,39),(25,100,45,40),(26,101,46,41),(27,102,47,42),(28,103,48,29)]])

D143Q8 is a maximal subgroup of
D14.1SD16  D142SD16  D14.Q16  C7⋊(C8⋊D4)  D14⋊Q16  D14⋊C8.C2  (C2×C8).D14  C7⋊C8.D4  D146SD16  C5614D4  Dic14.16D4  C568D4  D145Q16  D28.17D4  D143Q16  C56.36D4  C42.232D14  D2810Q8  C42.131D14  C42.132D14  C42.133D14  C42.134D14  C42.135D14  D7×C22⋊Q8  C4⋊C426D14  C14.162- 1+4  C14.172- 1+4  C14.512+ 1+4  C14.1182+ 1+4  C14.522+ 1+4  C14.532+ 1+4  C14.202- 1+4  C14.212- 1+4  C14.232- 1+4  C14.772- 1+4  C14.572+ 1+4  C14.582+ 1+4  C14.262- 1+4  C42.137D14  D2810D4  Dic1410D4  C4220D14  C4221D14  C42.234D14  C42.144D14  C42.145D14  D2812D4  D288Q8  C42.241D14  C42.174D14  D289Q8  C42.176D14  C42.178D14  C42.180D14  Q8×C7⋊D4  C14.442- 1+4  C14.452- 1+4  C14.1042- 1+4  (C2×C28)⋊15D4  C14.1452+ 1+4  C14.1082- 1+4
D143Q8 is a maximal quotient of
C28⋊(C4⋊C4)  C22.23(Q8×D7)  (C2×C28).288D4  (C2×C28).54D4  C4⋊(D14⋊C4)  D14⋊C46C4  (C2×C28).289D4  (C2×C4).45D28  Dic14.4Q8  D28.4Q8  D285Q8  D286Q8  Dic145Q8  Dic146Q8  C14.C22≀C2  (Q8×C14)⋊7C4  (C22×Q8)⋊D7

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H7A7B7C14A···14I28A···28R
order1222224444444477714···1428···28
size111114142244141428282222···24···4

44 irreducible representations

dim11111122222244
type+++++++-++-+
imageC1C2C2C2C2C2D4Q8D7C4○D4D14C7⋊D4Q8×D7Q82D7
kernelD143Q8Dic7⋊C4C4⋊Dic7D14⋊C4C2×C4×D7Q8×C14C28D14C2×Q8C14C2×C4C4C2C2
# reps121211223291233

Matrix representation of D143Q8 in GL4(𝔽29) generated by

28000
02800
0044
002518
,
1000
162800
0044
001825
,
272200
9200
00112
002718
,
17000
111200
0010
0001
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,4,25,0,0,4,18],[1,16,0,0,0,28,0,0,0,0,4,18,0,0,4,25],[27,9,0,0,22,2,0,0,0,0,11,27,0,0,2,18],[17,11,0,0,0,12,0,0,0,0,1,0,0,0,0,1] >;

D143Q8 in GAP, Magma, Sage, TeX

D_{14}\rtimes_3Q_8
% in TeX

G:=Group("D14:3Q8");
// GroupNames label

G:=SmallGroup(224,141);
// by ID

G=gap.SmallGroup(224,141);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,218,188,86,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽